
	 � 1

Advanced Brushed
and Brushless
Digital Motor
Controllers

User Manual

V3.0, March 8, 2024

visit www.roboteq.com to download the latest revision of this manual

©Copyright 2022 Roboteq, Inc

Brushless Motor Connections and Operation

2	 Advanced Digital Motor Controllers User Manual	 V3.0, March 8, 2024

Revision History

Date Version Changes

July 10, 2022 3.0 Miscellaneous updates to conform to firmware v3.0

February 10, 2022 2.1a Miscellaneous updates in order to conform to firmware v2.1a

December 3, 2020 2.1 Miscellaneous updates in order to conform to firmware v2.1

July 8, 2019 2.0 Separated CAN functionality (“CAN Networking Manual”)

Separated Microbasic (“Microbasic Scripting Manual”)

Separated Roborun+ Utility (“Roborun+ Utility User Manual”)

Miscellaneous updates in order to conform to firmware v2.0

August 28, 2017 1.8 Added AC Induction Sections

Extended command set

October 15, 2016 1.7 Added Speed Position Mode

Major Additions to Brushless Motor Section

Added RoboCAN protocol

Miscellaneous updates

May 10, 2012 1.2 Added CAN Networking

Added Closed Loop Count Position mode,
Closed Loop Torque mode

Extended command set

January 8, 2011 1.2 Added Brushless Motor Connections and Operation

July 15, 2010 1.2 Extended command set

Improved position mode

May 15, 2010 1.1 Added Scripting

January 1, 2010 1.0 Initial release

The information contained in this manual is believed to be accurate and reliable. How-
ever, it may contain errors that were not noticed at the time of publication. Users are
expected to perform their own product validation and not rely solely on data contained
in this manual.

	 Advanced Digital Motor Controllers User Manual� 3

	 Revision History...2
	 Introduction..17
	 Refer to the Datasheet for Hardware-Specific Issues................................17
	 User Manual Structure and Use...17
	 SECTION 1 Connecting Power and Motors to the Controller....................17
	 SECTION 2 Safety Recommendations..17
	 SECTION 3 Connecting Sensors and Actuators to Input/Outputs18
	 SECTION 4 I/O Configuration and Operation...18
	 SECTION 5 Roboteq Products Connection and Operation........................18
	 SECTION 6 Command Modes ..18
	 SECTION 7 Motor Operating Features and Options..................................18
	 SECTION 8 Brushless Motor Connections and Operation.........................18
	 SECTION 9 AC Induction MotorOperation...18
	 SECTION 10 Closed Loop Speed and Speed Position Modes...................18
	 SECTION 11 Closed Loop Relative and Tracking Position Modes...............18
	 SECTION 12 Closed Loop Count Position Mode.......................................19
	 SECTION 13 Closed Loop Torque Mode..19
	 SECTION 14 Serial (RS232/RS485/USB/TCP) Operation...........................19
	 SECTION 15 Commands Reference..19

SECTION 1	 Connecting Power and Motors to the Controller..21
	 Power Connections..21
	 Controller Power..22
	 Controller Powering Schemes..23
	 Mandatory Connections..24
	 Connection for Safe Operation with Discharged Batteries (note 1)...........25
	 Use precharge Resistor to prevent switch arcing (note 2).........................25
	 Protection against Damage due to Regeneration (notes 3).......................25
	 Connect Case to Earth if connecting AC equipment (note 4)....................25
	 Avoid Ground loops when connecting I/O devices (note 5).......................25
	 Connecting the Motors..26
	 Single Channel Operation..26
	 Power Fuses..27
	 Wire Length Limits..27
	 Electrical Noise Reduction Techniques...28
	 Battery Current vs. Motor Current...28
	 Power Regeneration Considerations..29
	 Using the Controller with a Power Supply...30

SECTION 2	 Safety Recommendations..33
	 Possible Failure Causes...33
	 Motor Deactivation in Normal Operation...34
	 Motor Deactivation in Case of Output Stage Hardware Failure.................35
	 Manual Emergency Power Disconnect..36
	 Remote Emergency Power Disconnect...37
	 Protection using Supervisory Microcomputer...38
	 Self Protection against Power Stage Failure..38
	 Safe Torque-Off (STO)...40
	 Safe Torque Off (STO) on Roboteq Controllers...40
	 Soft-STO inputs..41
	 Activating STO...41
	 Deactivating STO...41
	 Constraints when using STO...41

4	 Advanced Digital Motor Controllers User Manual	 V3.0, March 8, 2024

	 STO Failure Messages...41
	 Firmware implementation..42
	 Installation – Maintenance...42
	 STO Voltage source specification attention ...43
	 Compliance and Safety Metrics...43
	 Technical Data..44

SECTION 3	 Connecting Sensors and Actuators to Input/Outputs...45
	 Controller Connections..45
	 Controller’s Inputs and Outputs...46
	 Connecting devices to Digital Outputs..47
	 Connecting Resistive Loads to Outputs..47
	 Connecting Inductive loads to Outputs..47
	 Connecting Switches or Devices to Inputs shared with Outputs..............48
	 Connecting Switches or Devices to direct Digital Inputs...........................48
	 Connecting a Voltage Source to Analog Inputs..49
	 Reducing noise on Analog Inputs..50
	 Connecting Potentiometers to Analog Inputs..50
	 Connecting Potentiometers for Commands with Safety band guards.......51
	 Connecting External Thermistor to Analog Inputs......................................52
	 Using the Analog Inputs to Monitor External Voltages..............................53
	 Connecting to RC Radios...54
	 Connecting SSI Sensors..55
	 SSI Sensors Overview...55
	 Connecting the SSI Sensor..55
	 SSI Sensor Clock Polarity...56
	 Connecting Optical Encoders..56
	 Optical Incremental Encoders Overview...56
	 Recommended Encoder Types..57
	 Connecting the Encoder..58
	 Cable Length and Noise Considerations..59
	 Motor - Encoder Polarity Matching..59

SECTION 4	 I/O Configuration and Operation..61
	 Basic Operation...61
	 Input Selection...62
	 Digital Inputs Configurations and Uses..62
	 Analog Inputs Configurations and Use..63
	 Analog Min/Max Detection...64
	 Min, Max and Center adjustment...64
	 Deadband Selection...65
	 Command Correction...66
	 Use of Analog Input..66
	 Pulse Inputs Configurations and Uses..66
	 Use of Pulse Input..67
	 Digital Outputs Configurations and Triggers...68
	 Encoder Configurations and Use...68
	 SSI Configuration and Use...69
	 Hall and other Rotor Sensor Inputs..71
	 Sensor Min Max values...71
	 Relative Speed...71
	 Brake Release..72

	 Advanced Digital Motor Controllers User Manual� 5

SECTION 5	 Roboteq Products Connection and Operation..75
	 Introduction to MGS1600 Magnetic Guide Sensor....................................75
	 Introduction to FLW100 Flowsensor..76
	 Introduction to BMS10X0 Battery Management System...........................76
	 Available Interfaces..76
	 MultiPWM interface...76
	 Enabling MultiPWM Communication...77
	 Accessing Sensor Information...78
	 Connecting Multiple Similar Sensors...78
	 Accessing Multiple Sensor Information Sequentially.................................79
	 Accessing Multiple Sensor Information Simultaneously............................79

SECTION 6	 Command Modes...81
	 Input Command Modes and Priorities...81
	 USB vs Serial Communication Arbitration..83
	 Network Commands Arbitration..83
	 Commands issued from MicroBasic scripts..83
	 Operating the Controller in RC mode...84
	 Input RC Channel Selection...85
	 Input RC Channel Configuration..85
	 Joystick Range Calibration...85
	 Deadband Insertion..85
	 Command Correction...85
	 Reception Watchdog..85
	 Using Sensors with PWM Outputs for Commands...................................86
	 Operating the Controller In Analog Mode..86
	 Input Analog Channel Selection...87
	 Input Analog Channel Configuration..87
	 Analog Range Calibration...87
	 Using Digital Input for Inverting direction..87
	 Safe Start in Analog Mode...87
	 Protecting against Loss of Command Device..87
	 Safety Switches...88
	 Monitoring and Telemetry in RC or Analog Modes....................................88
	 Using the Controller in Serial (USB/RS232/RS485/TCP) Mode..................88

SECTION 7	 Motor Operating Features and Options..89
	 Power Output Circuit Operation...89
	 Global Power Configuration Parameters..90
	 PWM Frequency..90
	 Overvoltage Protection..90
	 Undervoltage Protection..90
	 Temperature-Based Protection..90
	 Current Limiting...91
	 I2T Protection..91
	 Short Circuit Protection..92
	 Closed Loop Error Protection...92
	 Mixed Mode Select..93
	 Motor Channel Parameters..94
	 User Selected Current Limit Settings..94
	 Selectable Amps Threshold Triggering...95

6	 Advanced Digital Motor Controllers User Manual	 V3.0, March 8, 2024

	 Programmable Acceleration & Deceleration..95
	 Forward and Reverse Power Adjustment Gain..96
	 Speed feedback filter...96
	 Selecting the Motor Control Modes..98
	 Open Loop Speed Control...98
	 Closed Loop Speed Control...99
	 Closed Loop Speed Position Control..99
	 Closed Loop Position Relative Control...100
	 Closed Loop Count Position...100
	 Closed Loop Position Tracking..100
	 Torque Mode..101
	 Motion Control Modes Overview..101
	 Feedforward terms..103
	 Acceleration feedforward control...103
	 Velocity feedforward control..105
	 DS402 Homing Function..107

SECTION 8	 Brushless Motor Connections and Operation... 109
	 Introduction to Brushless Motors..109
	 Number of Poles.. 110
	 Trapezoidal Switching... 111
	 Hall Sensor Wiring...112
	 Hall Sensor Verification..113
	 Hall Sensor Wiring Order...113
	 Determining the Wiring Order Empirically...114
	 Hall Sensor Alignment...115
	 Sinusoidal Commutation..116
	 Configuring the Controller for Sinusoidal Commutation..........................118
	 Selecting and Configuring Supported Angle Sensors..............................120
	 Preparation for Automatic Sensor Setup..126
	 Running the Automatic Sensor Setup..128
	 Field Oriented Control (FOC)...133
	 Decoupling Current Control...136
	 Field Weakening...139
	 Manual Field Weakening..140
	 Automatic Field Weakening...140
	 Interior Permanent Magnet Motor Operation..143
	 Constant Torque Region IPM motor control algorithm.............................145
	 Constant Power Region IPM motor control algorithm.............................147
	 Operating Brushless Motors..148
	 Stall Detection...148
	 Sensor Error Detection..149
	 Speed Measurement using the angle feedback Sensors........................149
	 Distance Measurement using Hall, SSI or other Sensors........................150

SECTION 9 	 AC Induction MotorOperation... 151
	 Introduction to AC Induction Motors..151
	 Asynchronous Rotation and Slip..152
	 Connecting the Motor..153
	 Selecting and Connecting the Encoder..153
	 Testing the Encoder...153
	 Open Loop Variable Frequency Drive Operation......................................154

	 Advanced Digital Motor Controllers User Manual� 7

	 Figuring the Motor’s Volts per Hertz..154
	 Maintaining Slip within Safe Range...155
	 Closed Loop Speed Mode with Constant Slip Control............................155
	 Field Oriented Control (FOC) mode Operation..156
	 Configuring FOC Torque Mode..157
	 FOC Gains Determination & Tuning ..158
	 Configuring FOC Speed Mode...159
	 Speed Limiting in FOC Torque Mode...160
	 Induction Motor Parameters Calculation..160
	 No load testing...161
	 Locked rotor testing...163
	 Optimal slip calculation..165

SECTION 10	 Closed Loop Speed and Speed-Position Modes... 167
	 Modes Description..167
	 Closed Loop Speed Mode...167
	 Closed Loop Speed Position Control ...167
	 Motor Sensors...168
	 Tachometer or Encoder Mounting...168
	 Tachometer wiring...169
	 Hall Sensors as Speed Sensors...169
	 Speed Sensor and Motor Polarity..169
	 Controlling Speed in Closed Loop..171
	 PID Description..171
	 PID tuning in Closed Loop Speed Mode..172
	 PID Tuning in Speed Position Mode...173

SECTION 11	 Closed Loop Relative and Tracking Position Modes... 175
	 Modes Description..175
	 Position Relative Mode..175
	 Position Tracking Mode..175
	 Selecting the Position Modes..176
	 Position Feedback Sensor Selection..176
	 Sensor Mounting...176
	 Feedback Sensor Range Setting..177
	 Adding Safety Limit Switches..178
	 Using Current Trigger as Protection...178
	 Operating in Closed Loop Relative Position Mode...................................178
	 Operating in Closed Loop Tracking Mode...180
	 Position Mode Relative Control Loop Description...................................180
	 PID tuning in Position Relative and Tracking Position Modes...................181
	 PID Tuning Differences between Position Relative and Position Tracking..... 183

SECTION 12	 Closed Loop Count Position Mode... 185
	 Mode description...185
	 Sensor Types and Mounting...185
	 Encoder Home reference...186
	 SSI Sensor Home reference..186
	 Preparing and Switching to Closed Loop...186
	 Count Position Commands..187
	 Position Command Chaining..187
	 Position Accuracy Considerations..188

8	 Advanced Digital Motor Controllers User Manual	 V3.0, March 8, 2024

	 PID Tuning in Count Position Mode..188

SECTION 13	 Closed Loop Torque Mode... 191
	 Torque Mode Description ...191
	 Torque Mode Selection, Configuration and Operation.............................192
	 Torque Mode Tuning...192
	 Speed Limiting...192

SECTION 14	 Serial (RS232/RS485/USB/TCP) Operation.. 193
	 Use and benefits of Serial Communication..193
	 Serial Port Configuration..194
	 Connector RS232 Pin Assignment...194
	 Connector RS485 Pin Assignment...194
	 Setting Different Bit Rates...194
	 Cable configuration..195
	 Extending the RS232 Cable...196
	 Connecting to Arduino and other TTL Serial Microcomputers.................196
	 RS485 Configuration..198
	 USB Configuration...198
	 TCP Configuration..198
	 Command Priorities...199
	 Communication Arbitration..199
	 Network Commands..200
	 Script-generated Commands...200
	 Communication Protocol Description..200
	 Character Echo...200
	 Command Acknowledgment...200
	 Command Error...201
	 Watchdog time-out..201
	 Controller Present Check...201
	 Raw Redirect Mode...201
	 Configuration...201
	 Checking Received Frames..201
	 Reading Received Frames...202
	 Transmitting Frames...202

SECTION 15	 Commands Reference.. 205
	 Commands Types...205
	 Runtime commands..205
	 Runtime queries..205
	 Maintenance commands...205
	 Configuration commands...206
	 Runtime Commands..206
	 AC - Set Acceleration...207
	 AX - Next Acceleration...208
	 B - Set User Boolean Variable..208
	 BRK - Brake Override...209
	 C - Set Encoder Counters..210
	 CB - Set Internal Sensor Counter...210
	 CIG – Set Current Integral Gains..211
	 CG - Set Motor Command via CAN...212
	 CPG – Set Current Proportional Gains...212

	 Advanced Digital Motor Controllers User Manual� 9

	 CS - CAN Send...213
	 CSS - Set SSI Sensor Counter ..214
	 CU - Raw Redirect Send..214
	 D0 - Reset Individual Digital Out bits...215
	 D1 - Set Individual Digital Out bits...216
	 DC - Set Deceleration..216
	 DG – Set PID Derivative Gains...217
	 DS - Set all Digital Out bits..218
	 DX - Next Deceleration..218
	 EES - Save Configuration in EEPROM...219
	 EX - Emergency Stop...219
	 G - Go to Speed or to Relative Position..220
	 GIQ - Go to Torque Amps...221
	 GID - Go to Flux Amps...222
	 H - Load Home counter...222
	 IG – Set PID Integral Gains..223
	 MG - Emergency Stop Release and Fault Clearance...............................224
	 MS - Stop in all modes...224
	 MSS - Motor Sensor Setup..224
	 P - Go to Absolute Desired Position...225
	 PG – Set PID Proportional Gains..225
	 PR - Go to Relative Desired Position..226
	 PRX - Next Go to Relative Desired Position...227
	 PX - Next Go to Absolute Desired Position..227
	 QST - Quick Stop...228
	 R - MicroBasic Run..228
	 S - Set Motor Speed..229
	 STT - STO Self-Test ...229
	 SX - Next Velocity...230
	 VAR - Set User Variable..231
	 DS402 Runtime Commands..231
	 CW – Control Word (DS402)..232
	 Profile Position Mode...233
	 Velocity Mode..233
	 Homing Mode ...234
	 Other Modes...234
	 FEW - Following Error Window (DS402)..235
	 FET - Following Error Time Out (DS402)..235
	 HMD – Homing Method (DS402)..236
	 HSP – Homing Speed (DS402)..236
	 INT - Interpolation Time Period (DS402)...237
	 MSL - Max Motor Speed (DS402)...238
	 PAC – Profile Acceleration (DS402)..239
	 PDC – Profile Deceleration (DS402)...239
	 PLT - Software Position Limit (DS402)...240
	 POF – Position Offset..240
	 POS – Target Position (DS402)...241
	 PSP – Profile Velocity (DS402)...241
	 ROM – Modes of Operation (DS402)...242
	 RST – Reset Controller...243

10	 Advanced Digital Motor Controllers User Manual	 V3.0, March 8, 2024

	 S16 – Target Velocity (DS402)...243
	 SAC – Velocity Acceleration (DS402)..244
	 SDC – Velocity Deceleration (DS402)...244
	 SPC - Target Profile Velocity (DS402)..245
	 SPL – Velocity Min/Max Amount (DS402)..245
	 TC – Target Torque (DS402)..246
	 TOF – Torque Offset...247
	 TSL – Torque Slope (DS402)...248
	 VOF – Velocity Offset...248
	 Runtime Queries..249
	 A - Read Motor Amps..251
	 AI - Read Analog Inputs...252
	 AIC - Read Analog Input after Conversion..252
	 ANG - Read Rotor Angle..253
	 ASI - Read Raw Sin/Cos sensor...253
	 B - Read User Boolean Variable..254
	 BA - Read Battery Amps..254
	 BCR - Read Internal Sensor Count Relative...255
	 BMC - Read BMS State Of Charge in AmpHours....................................256
	 BMF - Read BMS status flags..256
	 BMS - Read BMS switch states..257
	 BRK - Read Brake Override Status...258
	 BS - Read Internal Sensor Motor Speed in RPM.....................................259
	 BSC - Read BMS State of Charge in percentage.....................................259
	 BSR - Read Internal Sensor Motor Speed as 1/1000 of Max RPM..........260
	 C - Read Encoder Counter Absolute..261
	 CAN - Read Raw CAN frame...261
	 CB - Read Absolute Internal Sensor Counter...262
	 CD - Read Raw Redirect Received Frames Count...................................262
	 CEC – CAN Error Counter..263
	 CF - Read Raw CAN Received Frames Count..264
	 CHS - CAN Consumer Heartbeat Status..264
	 CIA - Read Converted Analog Command...265
	 CIG – Read Current Integral Gains...266
	 CIP - Read Internal Pulse Command..266
	 CIS - Read Internal Serial Command..267
	 CL - Read RoboCAN Alive Nodes Map..267
	 CPG – Read Current Proportional Gains...268
	 CR - Read Encoder Count Relative..269
	 CSR - Read Relative SSI Sensor Counter...270
	 CSS - Read Absolute SSI Sensor Counter...270
	 D - Read Digital Inputs...271
	 DDT - Read Raw Redirect Received Frame...271
	 DG – Read PID Derivative Gains..272
	 DI - Read Individual Digital Inputs..273
	 DO - Read Digital Output Status..273
	 DPA - Read DC/Peak Amps ...274
	 DR - Read Destination Reached...274
	 E - Read Closed Loop Error..275
	 F - Read Feedback..275

	 Advanced Digital Motor Controllers User Manual� 11

	 FC - Read FOC Angle Adjust..276
	 FLW - Read Flow Sensor Counter..276
	 FF - Read Fault Flags..277
	 FID - Read Firmware ID...278
	 FIN - Read Firmware ID (numerical)...279
	 FM - Read Runtime Status Flag...279
	 FS - Read Status Flags...281
	 HS - Read Hall Sensor States..281
	 ICL - Is RoboCAN Node Alive...282
	 IG – Read PID Integral Gains..283
	 LK - Read Lock status..283
	 M - Read Motor Command Applied...284
	 MA - Read Field Oriented Control Motor Amps.......................................284
	 MCB - Read Magsensor Markers Pattern..285
	 MCU - Microprocessor Usage...288
	 MGD - Read Magsensor Track Detect..288
	 MGM - Read Magsensor Markers...289
	 MGS - Read Magsensor Status...289
	 MGT - Read Magsensor Track Position...290
	 P - Read Motor Power Output Applied...291
	 PG – Read PID Proportional Gains...291
	 PHA - Read Phase Amps...292
	 PI - Read Pulse Inputs..293
	 PIC - Read Pulse Input after Conversion..293
	 S - Read Encoder Motor Speed in RPM...294
	 SCC - Read Script Checksum...294
	 SDT - Read Raw Redirect Received Frame as string...............................295
	 SEC - Read Sensor Errors..295
	 SNA - Read Sensor Angle..296
	 SNS – Sense Voltage ..297
	 SR - Read Encoder Speed Relative..297
	 SS - Read SSI Sensor Motor Speed in RPM..298
	 SSR - Read SSI Sensor Speed Relative...298
	 STT - STO Self-Test Result...299
	 T - Read Temperature...300
	 TM - Read Time..301
	 TR - Read Position Relative Tracking...301
	 TRN - Read Control Unit type and Controller Model................................302
	 UID - Read MCU Id..302
	 V - Read Volts...303
	 VAR - Read User Integer Variable...304
	 SL - Read Slip Frequency...304
	 DS402 Runtime Queries..305
	 AOM – Modes of Operation Display (DS402)..306
	 CW – Control Word (DS402)..306
	 SPE – Velocity Actual Value (DS402)..307
	 FEW - Following Error Window (DS402)..307
	 FET - Following Error Time Out (DS402)..308
	 HMD – Homing Method (DS402)..308
	 HSP – Homing Speed (DS402)..309

12	 Advanced Digital Motor Controllers User Manual	 V3.0, March 8, 2024

	 INT - Interpolation Time Period (DS402)...309
	 MSL - Max Motor Speed (DS402)...310
	 PAC – Profile Acceleration (DS402)..311
	 PDC – Profile Deceleration (DS402)...311
	 PLT - Software Position Limit (DS402)..311
	 POF - Position Offset (DS402)...312
	 PST - Position Actual Value...312
	 POS – Target Position (DS402)...313
	 PSP – Profile Velocity (DS402)...313
	 RMP – VL Velocity Demand (DS402)..314
	 ROM – Modes of Operation (DS402)...314
	 S16 – Target Velocity (DS402)...315
	 SAC – Velocity Acceleration (DS402)..315
	 SDC – Velocity Deceleration (DS402)...316
	 SDM – Supported Drive Modes (DS402)...316
	 SPL – Velocity Min/Max Amount (DS402)..317
	 SW – Status Word (DS402)..317
	 TC – Target Torque (DS402)..322
	 TOF - Torque Offset (DS402)..322
	 TRQ – Target Torque (DS402)...323
	 TSL – Torque Slope (DS402)...323
	 VDV – Velocity Demand (DS402) ...324
	 VNM – Version Number (DS402)..324
	 VOF - Velocity Offset (DS402)..324
	 Query History Commands...325
	 # - Send Next History Item / Stop Automatic Sending.............................325
	 # C - Clear Buffer History...326
	 # nn - Start Automatic Sending..326
	 # xx nn - Start automatic sending for specific stream.............................326
	 /?Q cc - Create data streams..327
	 //? - Dump the streams’ prefixes and delimiters......................................328
	 Maintenance Commands...329
	 CLMOD – Motor/Sensor Setup..330
	 CLSAV - Save calibrations to Flash...330
	 DFU - Update Firmware via USB/CANOpen..330
	 EELD - Load Parameters from EEPROM..331
	 EELOG - Dump Flash Log Data..331
	 EERST - Reset Factory Defaults..331
	 EESAV - Save Configuration in EEPROM...332
	 ERASE - Erase Flash Log Data ..332
	 LK - Lock Configuration Access...332
	 RESET - Reset Controller...332
	 SLD - Script Load...333
	 STIME - Set Time...333
	 UK - Unlock Configuration Access...333
	 Set/Read Configuration Commands ..333
	 Setting Configurations...334
	 Reading Configurations..334
	 Configuration Read Protection...335
	 General Configuration and Safety..335

	 Advanced Digital Motor Controllers User Manual� 13

	 ACS - Analog Center Command to Start..336
	 AMS - Analog keep within Guard Bands..336
	 BEE - User Storage in Battery Backed RAM..337
	 BRUN - Script Auto-Start..338
	 CLIN - Command Linearity...338
	 CPRI - Command Priorities...339
	 DFC - Default Command value..340
	 DMOD – Modbus Mode..340
	 ECHOF - Enable/Disable Serial Echo...341
	 EE - User-Defined Values...342
	 FLCL – Automatic Fault Clearance...343
	 ISM - Raw Redirect Mode...343
	 MDAL – Modbus Data Alignment..344
	 MNOD – Modbus Slave ID..345
	 PMS - Pulse keep within Min & Max Safety..345
	 RSBR - Set RS232/RS485 baudrate...346
	 RS485 - Enable RS485...347
	 RWD - Serial Data Watchdog...347
	 SCRO - Select Print output port for scripting...348
	 STO – STO Enable..348
	 TELS - Telemetry String..349
	 Analog, Digital, Pulse IO Configurations..350
	 ACTR - Analog Input Center (0) ...350
	 ADB - Analog Input Deadband...351
	 AINA - Analog Input Use..352
	 ALIN - Analog Input Linearity...353
	 AMAX - Analog Input Max...353
	 AMAXA - Analog Input Action at Max..354
	 AMIN - Analog Input Min...355
	 AMINA - Analog Input Action at Min..356
	 AMOD - Analog Conversion Type...356
	 APOL - Analog Input Conversion Polarity...357
	 AUXV - Digital Output High Side Drive Voltage Level...............................358
	 DINA - Digital Input Action...358
	 DINL - Digital Input Active Level..359
	 DOA - Digital Output Action...360
	 DOL - Digital Outputs Active Level..361
	 DOT - Digital Output Type..361
	 ENCO - Encoder Output Enable...362
	 PCTR - Pulse Input Center...363
	 PDB - Pulse Input Deadband..363
	 PINA - Pulse Input Use..364
	 PLIN - Pulse Input Linearity...365
	 PMAX - Pulse Input Max..365
	 PMAXA - Pulse Input Action at Max..366
	 PMIN - Pulse Input Min..367
	 PMINA - Pulse Input Action at Min..367
	 PMOD - Pulse Input Capture Type...368
	 PPOL - Pulse Input Capture Polarity...369
	 Motor Configurations...370

14	 Advanced Digital Motor Controllers User Manual	 V3.0, March 8, 2024

	 ALIM - Amps Limit...371
	 ATGA - Amps Trigger Action...372
	 ATGD - Amps Trigger Delay..373
	 ATRIG - Amps Trigger Level..374
	 B25 - Thermistor Temperature Coefficient ββ25...374
	 BKD - Brake Delay..375
	 BPR - Bypass Trajectory/Ramp...375
	 BRV - Brake Release Voltage..376
	 BHV - Brake Hold Voltage...377
	 BDT - Brake Delay Time...377
	 BLFB - Closed loop Feedback Sensor..378
	 BLSTD - Stall Detection...379
	 BR - Mechanical System Rotating Friction Coefficient.............................379
	 CLERD - Close Loop Error Detection...380
	 EDEC - Motor Fault Deceleration Rate ...381
	 EHL - Encoder Max Limit...382
	 EHLA - Encoder Action at Max..382
	 EHOME - Encoder Home Count..383
	 ELL - Encoder Min Limit..384
	 ELLA - Encoder Action at Min..384
	 EMOD - Encoder Usage..385
	 EPPR - Encoder Pulse/Rev Value..386
	 FET – Loop Error Time..386
	 FEW – Loop Error Limit..387
	 ICAP - PID Integrator Limit..388
	 JR - Mechanical System Inertia..388
	 KDG - PID Derivative Gain..389
	 KIG - PID Integral Gain...390
	 KPG - PID Proportional Gain...390
	 LPFB - Speed feedback low pass filter bandwidth...................................391
	 MAC - Motor Acceleration Rate...392
	 MCLE - SSI Multi-turn Counter number of bits..392
	 MDEC - Motor Deceleration Rate..393
	 MLX - Molex Input...394
	 MDIR - Motor Direction...395
	 MMOD - Operating Mode...395
	 MNRPM - Min Speed RPM...396
	 MSTA - SSI Multi-turn Counter start bit position......................................396
	 MVEL - Position Mode Velocity..397
	 MXMD - Mixed Mode..398
	 MXPF - Motor Max Power Forward...398
	 MXPR - Motor Max Power Reverse...399
	 MXRPM - Max Speed RPM...399
	 MXTRN - Position Turns Min to Max..400
	 NOMA - Nominal Current..401
	 OVH - Overvoltage hysteresis..401
	 OVL - Overvoltage Limit...402
	 OTL - Over Temperature Limit ...402
	 R25 - Thermistor Resistance at 25oC...403
	 SCLE - SSI Counter number of bits...404

	 Advanced Digital Motor Controllers User Manual� 15

	 SCLK - SSI Clock Speed...404
	 SED - Sensor Error Detection..405
	 SFTS - Safety Switch Connected...406
	 SHL - SSI Sensor Max Limit ...407
	 SHLA - SSI Sensor Action at Max..407
	 SHOME - SSI Sensor Home Count..408
	 SLEN - SSI sensor’s frame total number of bits......................................409
	 SLL - SSI Sensor Min Limit ...409
	 SLLA - SSI Sensor Action at Min...410
	 SMOD - SSI Sensor Usage ...411
	 SSTA - SSI Counter start bit position...411
	 THLD - Short Circuit Detection Sensitivity ..412
	 TNM - Motor Torque Constant...413
	 TPAL - Time for Amps Limit...414
	 UVL - Undervoltage Limit..414
	 Brushless Specific Commands..415
	 BADJ - Brushless Angle Zero Adjust..415
	 BADV - Brushless timing angle adjust..416
	 BFBK - Brushless Sinusoidal Angle Sensor..417
	 BHL - Brushless Internal Sensor Max Limit...417
	 BHLA - Brushless Internal Sensor Action at Max.....................................418
	 BHOME - Brushless Internal Sensor Home Count..................................419
	 BLL - Brushless Internal Sensor Min Limit..420
	 BLLA - Brushless Internal Sensor Action at Min......................................420
	 BMOD - Brushless Switching Mode..421
	 BPOL - Number of Pole Pairs...422
	 BZPW - Brushless Reference Seek Power..423
	 FWVR - Field Weakening Voltage Ratio..423
	 HPO - Hall Sensor Position Type..424
	 HSAT - Hall Sensor Angle Table..425
	 HSM - Hall Sensor Map...426
	 KIF - Current PID Integral Gain...426
	 KPF - Current PID Proportional Gain..427
	 LD - Motor d-axis Inductance ...428
	 LQ - Motor q-axis Inductance ..429
	 MXPW - Maximum Motor Output Power at Constant Power..................429
	 PSA - Phase Shift Angle ..430
	 RS - Motor Stator Resistance ..431
	 SPOL - SinCos/SSI Sensor Pole Pairs..432
	 SWD - Swap Windings...432
	 TID - FOC Target Id...433
	 VK - Motor Voltage constant..434
	 ZSMA - Cos Amplitude..435
	 ZSMC - SinCos Calibration...435
	 AC Induction Specific Commands...436
	 BFBK - AC Induction Operating Mode...436
	 ILM - Mutual Inductance..437
	 ILLR - Rotor Leakage Inductance...438
	 IRR - Rotor Resistance...438
	 MPW - Minimum Power..439

16	 Advanced Digital Motor Controllers User Manual	 V3.0, March 8, 2024

	 MXS - Optimal Slip Frequency...440
	 RFC - Rotor Flux Current..441
	 VPH - AC Induction Volts per Hertz..441
	 CAN/EtherCAT Communication Commands..442
	 CAS - CANOpen Auto start..443
	 CBR - CAN Bit Rate...443
	 CEN - CAN Mode...444
	 CGT – CANOpen Guard Time...444
	 CHB - CAN Heartbeat..445
	 CHBT – Consumer Heartbeat Time..445
	 CHLA - CAN Consumer Heartbeat Lost Action..446
	 CLSN - CAN Listen Node ID..446
	 CNOD - CAN Node ID..447
	 CSRT - MiniCAN SendRate..447
	 CTPS - CANOpen TPDO SendRate..448
	 CTT – CANOpen Transmission Type...448
	 ECAT - EtherCAT Enable Mode..449
	 ECT - EtherCAT Cycle Time..449
	 EDID - EtherCAT Explicit Device ID...450
	 FSA – DS402 PDS Finite State Automation Enable.................................451
	 RPDC - CANOpen RPDO COB-ID..451
	 RPDM - CANOpen RPDO Mapping...452
	 TPDC - CANOpen TPDO COB-ID...453
	 TPDM - CANOpen TPDO Mapping..453
	 TCP Communication Commands...454
	 DHCP - Enable DHCP..454
	 GWA - Gateway Address...455
	 IPA - IP Address...456
	 IPP - IP Port..457
	 PDNS - Primary DNS..457
	 SBM - Subnet Mask...458
	 SDNS - Primary DNS..459
	 WMOD - TCP Mode...460

Refer to the Datasheet for Hardware-Specific Issues

	 Advanced Digital Motor Controller User Manual� 17

	 Introduction

Refer to the Datasheet for Hardware-Specific Issues
This manual is the companion to your controller’s datasheet. All information that is specific
to a particular controller model is found in the datasheet. These include:

•	 Number and types of I/O
•	 Connectors pin-out
•	 Wiring diagrams
•	 Maximum voltage and operating voltage
•	 Thermal and environmental specifications
•	 Mechanical drawings and characteristics
•	 Available storage for scripting
•	 Battery or/and Motor Amps sensing
•	 Storage size of user variables to Flash or Battery-backed RAM

User Manual Structure and Use
The user manual discusses issues that are common to all controllers inside a given prod-
uct family. Except for a few exceptions, the information contained in the manual does not
repeat the data that is provided in the datasheets.

For CAN please refer to “CAN Networking Manual”. For Modbus please refer to “Modbus
Manual”. For Microbasic scripting please refer to “Microbasic Scripting Manual”. For Robo-
run+ Utility please refer to “Roborun+ Utility User Manual”. This manual is divided into 15
sections organized as follows:

SECTION 1 Connecting Power and Motors to the Controller
This section describes the power connections to the battery and motors, the mandatory
vs. optional connections. Instructions and recommendations are provided for safe opera-
tion under all conditions.

SECTION 2 Safety Recommendations
This section lists the possible motor failure causes and provides examples of prevention
methods and possible ways to regain control over motor if such failures occur.

Introduction

18	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

SECTION 3 Connecting Sensors and Actuators to Input/Outputs
This section describes all the types of inputs that are available on all controller models and
describes how to attach sensors and actuators to them. This section also describes the
connection and operation of optical encoders.

SECTION 4 I/O Configuration and Operation
This section details the possible use of each type of Digital, Analog, Pulse or Encoder in-
puts, and the Digital Outputs available on the controller. It describes in detail the software
configurable options available for each I/O type.

SECTION 5 Roboteq Products Connection and Operation
This section discusses how to interface one or more Roboteq’s products (MGS1600,
BMS1040, etc.) to the motor controller.

SECTION 6 Command Modes
The controller can be operated using serial, analog or pulse commands. This section de-
scribes each of these modes and how the controller can switch from one command input
to another. Detailed descriptions are provided for the RC pulse and Analog command
modes and all their configurable options.

SECTION 7 Motor Operating Features and Options
This section reviews all the configurable options available to the motor driver section. It
covers global parameters such as PWM frequency, overvoltage, or temperature-based
protection, as well as motor channel-specific configurations. These include amps limiting,
acceleration/deceleration settings, or operating modes.

SECTION 8 Brushless Motor Connections and Operation
This section addresses the installation and operating issues specific to brushless motors.
It is applicable only to brushless motor controller models.

SECTION 9 AC Induction MotorOperation
This section discusses the controller’s operating features and options when using three-
phase AC Induction motors.

SECTION 10 Closed Loop Speed and Speed Position Modes
This section focuses on the closed loop speed mode with feedback using analog speed
sensors or encoders. Information is provided on how to setup a closed loop speed control
system, tune the PID control loop, and operate the controller.

SECTION 11 Closed Loop Relative and Tracking Position Modes
This section describes how to configure and operate the controller in position mode using
analog, pulse, or encoder feedback. In position mode, the motor can be made to smoothly
go from one position to the next. Information is provided on how to setup a closed loop
position system, tune the PID control loop, and operate the controller.

User Manual Structure and Use

	 Advanced Digital Motor Controller User Manual� 19

SECTION 12 Closed Loop Count Position Mode
This section describes how to configure and operate the controller in Closed Loop Count
Position mode. Position command chaining is provided to ensure seamless motor motion.

SECTION 13 Closed Loop Torque Mode
This section describes how to select, configure and operate the controller in Closed Loop
Torque mode.

SECTION 14 Serial (RS232/RS485/USB/TCP) Operation
This section describes how to communicate to the controller via the RS232, RS485, USB or TCP
interface.

SECTION 15 Commands Reference
This section lists and describes in detail all configuration parameters, runtime commands,
operating queries, and maintenance commands available in the controller.

Power Connections

	 Advanced Digital Motor Controller User Manual� 21

SECTION 1	 Connecting
Power and
Motors to the
Controller

This section describes the controller’s connections to power sources and motors.

This section does not show connector pin-outs or wiring diagram. Refer to the datasheet
for these.

Important Warning

The controller is a high power electronics device. Serious damage, including fire,
may occur to the unit, motor, wiring, and batteries as a result of its misuse. Please
follow the instructions in this section very carefully. Any problem due to wiring
errors may have very serious consequences and will not be covered by the product’s
warranty.

Important Note

All products are not serviceable. If damage is suspected, the item must be replaced rather
than repaired. Attempting to service or repair the product voids any existing warranty and
may pose safety risks.

Consult customer support for more information on replacements.

Power Connections
Power connections are described in the controller model’s datasheet. Depending on the
model type, power connection is done via wires, fast-on tabs, screw terminals or copper
bars coming out of the controller.

Connecting Power and Motors to the Controller

22	 Advanced Digital Motor Controller User Manual	 V3.0, July 10, 2022

Controllers with wires as power connections have Ground (black), VMot (red) power ca-
bles and a Power Control wire (yellow). The power cables are located at the back end of
the controller. The various power cables are identified by their position, wire thickness and
color: red is positive (+), black is negative or ground (-).

Controllers with tabs, screw terminals or copper bars have their connector identified in
print on the controller.

Controller Power
The controller uses a flexible power supply scheme that is best described in Figure 1-1.
In this diagram, it can be seen that the power for the Controller’s internal microcomput-
er is separate from this of the motor drivers. The microcomputer circuit is connected to
a DC/DC converter which takes power from either the Power Control input or the VMot
input. A diode circuit that is included in most controller models, is designed to automat-
ically select one power source over the other and lets through the source that has the
highest voltage.

Channel 1 MOSFET Power Stage

Channel 2 MOSFET Power Stage

0Vmin
Vmot

Microcomputer &
MOSFET Drivers DC/DC

ENABLE

7V min
Vpwr max

0Vmin
Vmot max

Power
Control
&Backup

Vmot

Mot1(-)

Mot2(-)

Mot1(+)

Mot2(+)

Vmot

GND

GND

GND

*

* included in high voltage models only

FIGURE 1-1. Representations of the controller’s Internal Power Circuits

When powered via the Power Control input only, the controller will turn On, but motors
will not be able to turn until power is also present on the VMot wires or Tab.

The Power Control input also serves as the Enable signal for the DC/DC converter. When
floating or pulled to above 1V, the DC/DC converter is active and supplies the controller’s
microcomputer and drivers, thus turning it On. When the Power Control input is pulled to
Ground, the DC/DC converter is stopped and the controller is turned Off.

Controller Powering Schemes

	 Advanced Digital Motor Controller User Manual� 23

The Power Control input MUST be connected to Ground to turn the Controller Off. For
turning the controller On, even though the Power Control may be left floating, whenever
possible pull it to a 12V or higher voltage to keep the controller logic solidly On. You may
use a separate battery to keep the controller alive as the main Motor battery discharges.

On the high voltage controller that is rated above 60V, a zener diode is inserted between
the VMot supply and the DC/DC converter. This causes a voltage drop that keeps the volt-
age at the converter’s input within its maximum operating range. However, this diode also
increases by around 20V the low voltage threshold at which the controller will start operat-
ing when powered from VMot alone.

The table below shows the state of the controller depending on the voltage applied to
Power Control and VMot.

TABLE 1-1. Controller Status depending on Power Control and VMot

Power Control input is
connected to

And Main Battery
Voltage is Action

Ground Any Voltage Controller is Off. Required Off
Configuration.

Floating 0V Controller is Off. Not Recom-
mended Off Configuration.

Floating Above VMotMin (1) Controller is On.

Power Stage is Active (2)

7V to max PwrCtl (3) Volts Any Voltage Controller is On.

Power Stage is Active (2)

Note 1: VMotMin = 7V on all controller rated up to 60V. VMotMin = 28V on all controllers rated above
60V. See product datasheet

Note 2: Power Stage is active but turned off when overvoltage or undervoltage condition.

Note 3: 35V max on 30V controllers. 60V max on all products rated above 30V

Note: All ground terminals (-) are connected to each other inside the controller. On dual
channel controllers, the two VMot main battery wires are also connected to each other
internally. However, you must never assume that connecting one wire of a given battery
potential will eliminate the need to connect the other. When pre-charging the controller’s
capacitors, the Power Control input must be grounded.

Controller Powering Schemes
Roboteq controllers operate in an environment where high currents may circulate in
unexpected manners under certain condition. Please follow these instructions. Roboteq
reserves the right to void product warranty if analysis determines that damage is due to
improper controller power connection.

The example diagram on Figure 1-2 on page 24 shows how to wire the controller and
how to turn power On and Off. All Roboteq models use a similar power circuit. See the
controller datasheet for the exact wiring diagram for your controller model.

Connecting Power and Motors to the Controller

24	 Advanced Digital Motor Controller User Manual	 V3.0, July 10, 2022

Motor

Hall
Sensors

HA/HB/HC
GND/+5V

VMot/Red

PwrCtrl/Yellow

SW1 Main
On/Off Switch 1A

F2
1A

Resistor 100 Ohm 5W

+ -

SW2
Emergency
Contactor or
Cut-off Switch

F1

White/U

Green/V

Blue/W

Hall sensor
Connector

Earth Tab

I/O Connector

Ground/Black

Ground/Black

Main
Battery

Backup
Battery

Note 4

Note 5
Do not Connect!

Note 1

Note 3 Note 2

U

V W

FIGURE 1-2. Brushless DC Controller power wiring diagram

Mandatory Connections
It is imperative that the controller is connected as shown in the wiring diagram provided in
the datasheet in order to ensure safe and trouble-free operation. All connections shown as
thick black lines are mandatory.

•	 Connect the thick black wire(s) or the ground terminal to the minus (-) terminal of
the battery that will be used to power the motors. Connect the thick red wire(s) or
VMot terminal to the plus (+) terminal of the battery. The motor battery may be of
12V up to the maximum voltage specified in the controller model datasheet.

•	 The controller must be powered On/Off using switch SW1on the Power Control
wire/terminal. Grounding this line powers Off the controller. Floating or pulling this
line to a voltage will power On the controller. (SW1 is a common SPDT 1 Amp or
more switch).

•	 Use a suitable high-current fuse F1 as a safety measure to prevent damage to the
wiring in case of a major controller malfunction. (Littlefuse ATO or MAXI series).

•	 The battery must be connected in permanence to the controller’s Red wire(s) or
VMot terminal via a high-power emergency switch SW2 as an additional safety
measure. Partially discharged batteries may not blow the fuse, while still having
enough power left to cause a fire. Leave the switch SW2 closed at all times and
open only in case of an emergency. Use the main On/Off switch SW1 for normal
operation. This will prolong the life of SW2, which is subject to arcing when open-
ing under high current with the consequent danger of contact welding.

•	 If installing in an electric vehicle equipped with a Key Switch where SW2 is a con-
tactor, and the key switch energizes the SW2 coil, then implement SW1 as a relay.
Connect the Key Switch to both coils of SW1 and SW2 so cutting off the power to
the vehicle by the key switch and SW2 will set the main switch SW1 in the OFF
position as well.

Controller Powering Schemes

	 Advanced Digital Motor Controller User Manual� 25

Connection for Safe Operation with Discharged Batteries (note 1)
The controller will stop functioning when the main battery voltage drops below 7V. To en-
sure motor operation with weak or discharged batteries, connect a second battery to the
Power Control wire/terminal via the SW1 switch. This battery will only power the control-
ler’s internal logic. The motors will continue to be powered by the main battery while the
main battery voltage is higher than the secondary battery voltage.

Use precharge Resistor to prevent switch arcing (note 2)
Insert a 100Ohm, 5W resistor across the SW2 Emergency Switch. This will cause the con-
troller’s internal capacitors to slowly charge and maintain the full battery voltage by the time
the SW2 switch is turned on and thus eliminate damaging arcing to take place inside the
switch. Make sure that the controller is turned Off with the Power Control wire grounded
while the SW2 switch is off. The controller’s capacitors will not charge if the Power Control
wire is left floating and arcing will then occur when the Emergency switch is turned on.

Protection against Damage due to Regeneration (notes 3)
The voltage generated by motors rotating while not powered by the controller can cause
serious damage even if the controller is Off or disconnected.

•	 Use the main SW1 switch on the Power Control wire/terminal to turn Off and keep
Off the controller. In this way the controller cannot be powered up under any un-
wanted circumstances.

•	 Countermeasures should be taken to deal with any regeneration power if the bat-
tery or BMS system does not support energy to return back to it.

•	 Disconnecting the controller from the battery while motors are rotating could lead
to a serious damage. In this case a regeneration brake system is needed.

Connect Case to Earth if connecting AC equipment (note 4)
If building a system which uses rechargeable batteries, it must be assumed that periodi-
cally a user will connect an AC battery charger to the system. Being connected to the AC
main, the charger may accidentally bring AC high voltage to the system’s chassis and to
the controller’s enclosure. A similar danger exists when the controller is powered via a
power supply connected to the mains.

Some controller models in metallic enclosures are supplied with an Earth tab, which per-
mits earthing the metal case. Connect this tab to a wire connected to the Earth while the
charger is plugged in the AC main, or if the controller is powered by an AC power supply
or is being repaired using any other AC equipment (PC, Voltmeter etc.)

Avoid Ground loops when connecting I/O devices (note 5)
When connecting a PC, encoder, switch or actuators on the I/O connector, be very careful
that you do not create a path from the ground pins on the I/O connector and the battery
minus terminal. Should the controller’s main Ground wires (thick black) or terminals
be disconnected while the VMot wires (thick red) or terminals are connected, the high
current would flow from the ground pins, potentially causing serious damage to the
controller and/or your external devices.

•	 Do not connect a wire between the I/O connector ground pins and the battery mi-
nus terminal. Look for hidden connection and eliminate them.

•	 Have a very firm and secure connection of the controller ground wire and the bat-
tery minus terminal.

•	 Do not use connectors or switches on the power ground cables.

Connecting Power and Motors to the Controller

26	 Advanced Digital Motor Controller User Manual	 V3.0, July 10, 2022

Important Warning

Do not rely on cutting power to the controller for it to turn Off if the Power Control
is left floating. If motors are spinning because the robot is pushed or because of
inertia, they will act as generators and will turn the controller On, possibly in an un-
safe state. ALWAYS ground the Power Control wire terminal to turn the controller Off
and keep it Off.

Important Warning

Unless you can ensure a steady voltage that is higher than 7V in all conditions, it is
recommended that the battery used to power the controller’s electronics be sepa-
rate from the one used to power the motors. This is because it is very likely that the
motor batteries will be subject to very large current loads which may cause the volt-
age to eventually dip below 7V as the batteries’ charge drops. The separate backup
power supply should be connected to the Power Control input.

Connecting the Motors
Refer to the datasheet for information on how to wire the motor(s) to a particular motor
controller model.

After connecting the motors, apply a minimal amount of power using the Roborun PC util-
ity with the controller configured in Open Loop speed mode. Verify that the motor spins
in the desired direction. Immediately stop and swap the motor wires if not.

In Closed Loop Speed or Position mode, beware that the motor polarity must match this
of the feedback. If it does not, the motors will runaway with no possibility to stop other
than switching Off the power. The polarity of the Motor or of the feedback device may
need to be changed.

Important Warning

Make sure that your motors have their wires isolated from the motor casing. Some
motors, particularly automotive parts, use only one wire, with the other connected
to the motor’s frame. If you are using this type of motor, make sure that it is mount-
ed on isolators and that its casing will not cause a short circuit with other motors
and circuits which may also be inadvertently connected to the same metal chassis.

Single Channel Operation
Dual channel controllers may be ordered with the -S (Single Channel) suffix.

The two channel outputs must be paralleled as shown in the datasheet so that they can
drive a single load with twice the power. To perform in this manner, the controller’s Power
Transistors that are switching in each channel must be perfectly synchronized. Without
this synchronization, the current will flow from one channel to the other and cause the
destruction of the controller.

This synchronized function is achieved by utilizing a special firmware.

Power Fuses

	 Advanced Digital Motor Controller User Manual� 27

Important Warning

Before pairing the outputs, attach the motor to one channel and then the other. Veri-
fy that the motor responds the same way to command changes.

Power Fuses
Power fuses are mandatory, and one should be installed on each power input of the drive.
Each fuse must be rated for the maximum expected current of the application. For more
details, please consult the motor drive’s datasheet.

Caution

Fuses, inherently slow to respond, accommodate normal surge currents during
motor operations, such as acceleration and braking. However, due to their delayed
reaction, they cannot shield the drive from surges that rise to harmful levels, which
might lead to damage. Primarily, fuses are designed to interrupt the electrical circuit
in the event of a permanent short circuit, a situation that often suggests the drive
has sustained prior damage.

Wire Length Limits
The controller regulates the output power by switching the power to the motors On and
Off at high frequencies. At such frequencies, the wires’ inductance produces undesirable
effects such as parasitic RF emissions, ringing, and overvoltage peaks. The controller has
built-in capacitors and voltage limiters that will reduce these effects. However, should the
wire inductance be increased, for example by extended wire length, these effects will be
amplified beyond the controller’s capability to correct them. This is particularly the case for
the main battery power wires.

Important Warning

Avoid long connection between the controller and power source, as the added in-
ductance may cause damage to the controller when operating at high currents. Try
extending the motor wires instead since the added inductance is not harmful on
this side of the controller.

If the controller must be located at a long distance from the power source, the effects of
the wire inductance may be reduced by using one or more of the following techniques:

•	 Twisting the power and ground wires over the full length of the wires
•	 Use the vehicle’s metallic chassis for ground and run the positive wire along the

surface
•	 Add a capacitor (10,000uF or higher) near the controller

Connecting Power and Motors to the Controller

28	 Advanced Digital Motor Controller User Manual	 V3.0, July 10, 2022

Electrical Noise Reduction Techniques
As discussed in the above section, the controller uses fast switching technology to control
the amount of power applied to the motors. While the controller incorporates several cir-
cuits to keep electrical noise to a minimum, additional techniques can be used to keep the
noise low when installing the controller in an application. Below is a list of techniques you
can try to keep noise emission low:

•	 Keep wires as short as possible
•	 Loop wires through ferrite cores
•	 Add snubber RC circuit at motor terminals
•	 Keep controller, wires, and battery enclosed in a metallic body

Battery Current vs. Motor Current
The controller limits the current that flows through the motors and not the battery cur-
rent. Current that flows through the motor is typically higher than the battery current. This
counter-intuitive phenomenon is due to the “flyback” current in the motor’s inductance. In
some cases, the motor current can be extremely high, causing heat and potentially dam-
age while battery current appears low or reasonable.

The motor’s power is controlled by varying the On/Off duty cycle of the battery voltage
16,000 times per second to the motor from 0% (motor off) to 100 (motor on). Because
of the inductive flyback effect, during the Off time current continues to flow at nearly
the same peak - and not the average - level as during the On time. At low PWM ratios,
the peak current - and therefore motor current - can be very high as shown in Figure 1-4,
on next page.

The relation between Battery Current and Motor current is given in the formula below:

Motor Current = Battery Current / PWM ratio

Off

Off

Off

On

Vbat

Motor

Motor

Vbat

I mot
Avg

I bat
Avg

On

On

FIGURE 1-3. Current flow during operation

Power Regeneration Considerations

	 Advanced Digital Motor Controller User Manual� 29

Off

Off

Off

On

Vbat

Motor

Motor

Vbat

I mot
Avg

I bat
Avg

On

On

FIGURE 1-4. Instant and average current waveforms

The relation between Battery Current and Motor current is given in the formula below:

Motor Current = Battery Current / PWM Ratio

Example: If the controller reports 10A of battery current while at 10% PWM, the current in
the motor is 10 / 0.1 = 100A.

Power Regeneration Considerations
When a motor is spinning faster than it would normally at the applied voltage, such as
when moving downhill or decelerating, the motor acts as a generator. In such cases, the
current will flow in the opposite direction, back to the power source.

It is therefore essential that the controller is connected to rechargeable batteries. If a pow-
er supply is used instead, the current will attempt to flow back in the power supply during
regeneration, potentially damaging it and/or the controller.

Regeneration can also cause potential problems if the battery is disconnected while
the motors are still spinning. In such a case, the energy generated by the motor will
keep the controller On, and depending on the command level applied at that time, the
regenerated current will attempt to flow back to the battery. Since none is present, the
voltage will rise to potentially unsafe levels. The controller includes an overvoltage pro-
tection circuit to prevent damage to the output transistors (see “Using the Controller
with a Power Supply” below). However, if there is a possibility that the motor could be
made to spin and generate a voltage higher than 30V, a path to the battery must be pro-
vided, even after a fuse is blown. This can be accomplished by inserting a diode across
the fuse as shown in Figure 1-2 on page 24.

Please download the Application Note “Understanding Regeneration” from the www.ro-
boteq.com for an in-depth discussion of this complex but important topic.

Connecting Power and Motors to the Controller

30	 Advanced Digital Motor Controller User Manual	 V3.0, July 10, 2022

Important Warning

Use the controller only with a rechargeable battery as supply to the Motor Power
wires (thick black and red wires). If a transformer or power supply is used, damage
to the controller and/or power supply may occur during regeneration. See “Using
the Controller with a Power Supply” below for details.

Important Warning

Avoid switching Off or cutting open the main power cables while the motors are
spinning. Damage to the controller may occur. Always ground the Power Control
wire to turn the controller Off.

Using the Controller with a Power Supply
Using a transformer or a switching power supply is possible but requires special care,
as the current will want to flow back from the motors to the power supply during regen-
eration. As discussed in “Power Regeneration Considerations” above, if the supply is
not able to absorb and dissipate regenerated current, the voltage will increase until the
over-voltage protection circuit cuts off the motors. While this process should not be harm-
ful to the controller, it may be to the power supply, unless one or more of the protective
steps below is taken:

•	 Use a power supply that will not suffer damage in case a voltage is applied at its
output that is higher than its own output voltage. This information is seldom pub-
lished in commercial power supplies, so it is not always possible to obtain positive
reassurance that the supply will survive such a condition.

•	 Avoid deceleration that is quicker than the natural deceleration due to the friction
in the motor assembly (motor, gears, load). Any deceleration that would be quicker
than natural friction means that braking energy will need to be taken out of the sys-
tem, causing a reverse current flow and voltage rise.

•	 Place a battery in parallel with the power supply output. This will provide a reservoir
into which regeneration current can flow. It will also be very helpful for delivering
high current surges during motor acceleration, making it possible to use a lower
current power supply. Batteries mounted in this way should be connected for the
first time only while fully charged and should not be allowed to discharge. The power
supply will be required to output unsafe amounts of current if connected directly to a
discharged battery. Consider using a decoupling diode on the power supply’s output
to prevent battery or regeneration current to flow back into the power supply.

•	 Place a shunt regulator such as Roboteq’s SR5K. This device will monitor the
voltage at the controller and place resistive load in parallel with the power supply
in order to absorb the regenerated current. The diagram below shows to wire the
SR5K shunt regulator.

Using the Controller with a Power Supply

	 Advanced Digital Motor Controller User Manual� 31

Power
Supply

Motor
Controller

Shunt Regulator

V+

V+

V-

V-

+

-

-

+

FIGURE 1-5. Shunt Regulator wiring

Note: The schematic above is provided for reference only. It may not work in all conditions.

Possible Failure Causes

	 Advanced Digital Motor Controller User Manual� 33

SECTION 2	 Safety
Recommendations

In many applications, Roboteq controllers drive high power motors that move parts and
equipment at high speed and/or with very high force. In case of malfunction, potentially
enormous forces can be applied at the wrong time and/or wrong place causing serious
damage to property and/or harm to a person. While Roboteq controllers operate very
reliably, and failures are rare, a failure is possible as with any other electronic equipment.
If there is any danger that a loss of motor control can cause damage or injury, you must
plan on that possibility and implement methods for stopping the motor independently of
the controller operation.

Below is a list of failure categories, their effect and possible ways to regain control, or min-
imize the consequences. The list of possible failures is not exhaustive and the suggested
prevention methods are provided as examples for information only.

Important Safety Disclaimer

Dangerous uncontrolled motor runaway condition can occur for a number of rea-
sons, including, but not limited to command or feedback wiring failure, configura-
tion error, faulty firmware, errors in user MicroBasic script or in the user program, or
controller hardware failure. The user must assume that such failures can occur and
must take all measures necessary to make his/her system safe in all conditions.
The information contained in this manual, and in this section in particular, is provid-
ed for information only. Roboteq will not be liable in case of damage or injury as a
result of product misuse or failure.

Possible Failure Causes
The dangerous unintended motor operation could occur for a number of reasons,
including, but not limited to:

•	 Failure in Command device
•	 Feedback sensors malfunction
•	 Wiring errors or failure
•	 Controller configuration error
•	 Faulty firmware
•	 Errors or oversights in user MicroBasic scripts
•	 Controller hardware failure

Safety Recommendations

34	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Motor Deactivation in Normal Operation
In normal operation, the controller is always able to turn off the motor if it detects faults or
if instructed to do so from an external command.

There are three kinds of actions in case of faults.

1.	 Quick Stop Action: This action is used in case of faults that have nothing to do with
motor control and thus they do not require the instant cut of the motor power. The
controller will react to these faults by ramping down the speed of the motor from its
current value to 0 RPM, following a deceleration defined by the “Fault Deceleration”
(EDEC) parameter. Please note that Quick Stop will switch the system to Speed mode
to decelerate the motor. For proper operation, the Speed mode must be configured
with the appropriate PID gains. This Action is used for the following faults:

•	 Quick Stop, either commanded (QST), or triggered as an action.
•	 Dead Man Switch, triggered as an action.
•	 Command watchdog expiration
•	 Loop Error Detection

2.	 Disabling the power stage: This action is used for critical failures that require the
immediate cut of the motor power. To do so, the controller will switch OFF all the H
- bridge MOSFETs, preventing any additional power to be applied to the motor. The mo-
tor phases will be essentially disconnected, and the motor will be freewheeling until it
stops due to its mechanical power loses (vehicle’s weight, friction of the moving parts).
This action is used for the following faults:

•	 Emergency Stop, either commanded (EX), or triggered as an action.
•	 Overvoltage
•	 Undervoltage
•	 Short
•	 Sensor Error Detection
•	 MOSFail

3.	 Electrical Brake: Contrary to Quick stop, that will break the motor following the
defined deceleration, and the disabled power stage, that will leave the motor in free-
wheeling, electrical brake will stop the motor in a quick way, by shorting its phases
together. To achieve that, the controller will turn ON all bottom MOSFETs. Depending
on the speed of the motor - and therefore its back emf - high current surges can be
developed that can be harmful for the controller. To avoid that, the motor should be in
a relatively low speed when performing electrical braking. If the application requires
electrical braking to be performed as a safety action, the regenerative power should
be calculated to ensure that is harmless for the controller. This action is used for the
following faults:

•	 Limit Switches
•	 Stall Detection

Important Note

Quick Stop will switch the system to Speed mode to decelerate the motor. For
proper operation, the Speed mode must be configured with the appropriate PID
gains.

Motor Deactivation in Case of Output Stage Hardware Failure

	 Advanced Digital Motor Controller User Manual� 35

Important Warning:

While cutting the power to the motors is generally the best thing to do in case of
major failure, it may not necessarily result in a safe situation.

Motor Deactivation in Case of Output Stage Hardware Failure
The power stage of each controller is composed of 4 or 6 MOSFET paths depending on
the motor that they are designed to drive (brushed, brushless or induction motors). In
case that a controller’s MOSFTET is damaged, it can be permanently ON or OFF without
the controller having the ability to change its state. Depending on which MOSFETs are
damaged and their failure modes (open or shorted), different faulty conditions can occur.
Some of them will not affect the motor when it is idle, but other will permanently short
circuit the power stage or even supply constant voltage to the motor windings.

The figures below show all the possible combinations of shorted MOSFETs switches in a
brushed DC motor controller.

1

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-

+

-

+

-

3

2

9

8

11

10

13

15 16

12

6

5

4 7

14

FIGURE 2-1. MOSFET Failures resulting in no motor activation

1

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-

+

-

+

-

3

2

9

8

11

10

13

15 16

12

6

5

4 7

14

FIGURE 2-2. MOSFET Failures resulting in battery short circuit and no motor activation

Safety Recommendations

36	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

1

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-

+

-

+

-

3

2

9

8

11

10

13

15 16

12

6

5

4 7

14

FIGURE 2-3. MOSFET Failure resulting in motor activation

Only in DC controllers, the motor can run out of control regardless of, if the controller
is ON or OFF. While these failures conditions (15 and 16) are rare, users must take
them into account and provide means to cut all power to the controller’s power stage
when they occur. The same precautions must be followed on brushless and IM con-
trollers in case that the power stage is short circuited.

The controller will check for shorted MOSFETs every time it powers ON or whenever the
STT command is executed (see STT - STO Self-Test, page 208). If either of the MOSFETs
is found to be shorted (which is usually the initial condition of a damaged MOSFET), the
controller will react by disabling the power stage and setting the respective flags (MOS-
Fail bit of the fault flags, EStop and FETs Off bits of the Status flags). Disabling the power
stage cannot prevent a battery short circuit if both top and bottom MOSFETs are shorted,
so the control logic of the system should detect that condition and act accordingly. The
MOSfail alarm will be cleared only if the MOSFET failure goes away and the self-test gets
executed (either after the STT command or after power-up).

The MOSFET test can be by-passed by configuration with the SFTS - Safety Switch Con-
nected command, in case a safety switch is connected between the UVW connectors of
the controller and the motor.

Manual Emergency Power Disconnect
In systems where the operator is within physical reach of the controller, the simplest
safety device is the emergency disconnect switch that is shown in the wiring diagram
inside all controller datasheets, and in the example diagram below.

FIGURE 2-4. Example powering diagram

Remote Emergency Power Disconnect

	 Advanced Digital Motor Controller User Manual� 37

The switch must be placed visibly and be easy to operate. Prefer “mushroom” emergency
stop push buttons. Make sure that the switches are rated at the maximum current that
can be expected to flow through all motors at the same time.

FIGURE 2-5. “Mushroom” type Emergency Disconnect Switch

Important Note

When the motor is connected to chassis and the chassis is totally isolated from the
battery negative terminal (system ground), then it could be transformed to an EMI
antenna. For this reason it is highly recommended to use a Y capacitor between the
chassis and the battery negative terminal, so as to have the chassis AC coupled to
the system ground.

Remote Emergency Power Disconnect
In remote controlled systems, the emergency switch must be replaced by a high power
contactor relay as shown in Figure 2-6. The relay must be normally open and be activated
using an RC switch on a separate radio channel. The receiver should preferably be
powered directly from the system’s battery. If powered from the controller’s 5V output,
keep in mind that in case of a total failure of the controller, the 5V output may or may not
be interrupted.

+ -

VMot

Ground

RC1

RC2

RC3

RC Switch

Controller

RC Receiver

Main
Battery

I/O Connector

PwrCtrl

On/O� Switch

Ground

Safety Recommendations

38	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

FIGURE 2-6 Example of remotely operated safety disconnect

The receiver must operate in such a way that the contactor relay will be off if the transmit-
ter if off or out of range.

The transmitter should have a visible and easy to reach an emergency switch for the op-
erator. That switch will be used to deactivate the relay remotely. It could also be used to
shutdown entirely the transmitter, assuming it is determined for certain that this will deac-
tivate the relay at the controller.

Protection using Supervisory Microcomputer
In applications where the controller is commanded by a PC, a microcomputer or a PLC,
that supervisory system could be used to verify that the controller is still responding
and cut the power to the controller’s power stage in case a malfunction is detected.
The supervisory system would only require a digital output or other means to activate/
deactivate the contactor relay as shown in the figure below.

+ -

VMot

Ground

RS232

Digital Output

Controller

PC, PLC or
Microcomputer

Main
Battery

I/O Connector

PwrCtrl

On/Off Switch

Ground

FIGURE 2-7. Example of safety disconnect via supervisory system

Self Protection against Power Stage Failure
If the controller processor is still operational, it can self detect several, although not all,
situations where a motor is running while the power stage is off. The figure below shows
a protection circuit using an external contactor relay.

Self Protection against Power Stage Failure

	 Advanced Digital Motor Controller User Manual� 39

VMot

Ground

Digital Out

Emergency
Disconnect

Contactor

to +30V Max

+ -

Main
Battery

I/O Connector

PwrCtrl

On/O� Switch

Ground

Controller

FIGURE 2-8. Self protection circuit using a contactor

Note: Digital outputs are rated 40V max. If the battery voltage is higher than 40V, the relay
must be connected to the + of an alternate power source of lower voltage.

The controller must have the Power Control input wired to the battery so that it can oper-
ate and communicate independently of the power stage. The controller’s processor will
then activate the contactor coil through a digital output configured to turn on when the
“No MOSFET Failure” condition is true. The controller will automatically deactivate the
coil if the output is expected to be off and the battery current is above 500mA to 2.5A (de-
pending on the controller model) for more than 0.5s.

The contactor must be rated high enough so that it can cut the full load current. For even
higher safety, additional precaution should be taken to prevent and to detect fused contac-
tor blades.

This contactor circuit will only detect and protect against damaged output stage condi-
tions. It will not protect against all other types of fault. Notice therefore, the presence of
an emergency switch in series with the contactor coil. This switch should be operated
manually or remotely, as discussed in the Manual Emergency Power Disconnect the Re-
mote Emergency Power Disconnect and the Protection using Supervisory Microcomputer
earlier in this section of the manual.

Using this contactor circuit, turning off the controller will normally deactivate the digital
output and this will cut the power to the controller’s output stage.

Safety Recommendations

40	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Important Warning

Fully autonomous and unsupervised systems cannot depend on electronics alone to
ensure absolute safety. While a number of techniques can be used to improve safety,
they will minimize but never totally eliminate risks. Such systems must be mechani-
cally designed so that no moving parts can ever cause harm in any circumstances.

Safe Torque-Off (STO)
Safe Torque Off is a safe method for switching controller in a state where no torque
is generated, regardless whether the controller is operating normally or is faulty. This
function is a mechanism that prevents the drive from restarting unexpectedly. STO has
the immediate effect that the drive cannot supply any torque-generating energy. STO can
be used wherever the drive will be brought to a standstill in a sufficiently short time by the
load torque or friction or where coasting down of the drive is not relevant to safety. STO
enables safe working and has a wide range of use in motion control/ systems with moving
axes. The advantage of the integrated STO safety function compared with standard
safety technology using electromechanical switchgear is the elimination of separate
components and the effort that would be required to wire and service them. Because of
the rapid electronic switching times, the function has a shorter switching time than the
electromechanical components in a conventional solution.

Specific motor controllers implement Safe Torque-Off (STO) circuitry, which is certified
from TUV (T-version - Certification No. M6A 104504 0001 Rev. 01). STO is the most com-
mon safety function, meant for motor controllers, ensuring that upon trigger no torque will
be generated even after the controller power cycle. For controllers without the specific cir-
cuit the STO is implemented in firmware alone and digital inputs 1 and 2 are usually used
(check controller’s datasheet).

Safe Torque Off (STO) on Roboteq Controllers
Two digital inputs on the user IO connector can be used to put the controller in a state
where the motor is deprived of energy.

The two inputs, labeled STO1 and STO2 must both be brought and maintained at a logic
level 1 for the controller to be active. If any one or both of these lines are at 0, the output
is de-energized.

The STO circuit operates independently of the MCU. It will always override the MCU,
whether the MCU is processing normally, or is in a hardware of firmware fault condition.

The STO circuit works by controlling the voltage supply to the controller’s MOSFET driv-
ers. When both STO1 and STO2 are at logic 1 level, the MOSFET driver are supplied with
power. When either or both STO1 and STO2 are at logic level 0, the MOSFET driver power
is cut, and the MOFETs gates can no longer be above the ON threshold level, regardless
of the MCU activity.

Accordingly, the STO circuit is built with redundancy and will continue to function if any
one component is faulty, anywhere in the STO circuit or elsewhere in the controller.

Safe Torque-Off (STO)

	 Advanced Digital Motor Controller User Manual� 41

Soft-STO inputs

On controllers that do not have the certified STO circuitry, a soft STO implementation is
available, which clones the principles of the real STO without of course being certified.

In that case all the available digital inputs have an extra action “Soft STO”. Two of them
need to have this action activated and they will act as STO inputs.

Activating STO
By factory default STO is disabled. It must be enabled by removing the jumper located
on the controller’s PCB. STO is activated by removing power (logic level 0) to both STO
inputs. In order for controller to monitor STO state, this function must be activated
through Roborun+ Utility or serial command (check command section). The controller will
immediately stop generation of torque in the motor. STO functionality is only available in
the T version of the controller.

Deactivating STO
STO is deactivated by applying a voltage (logic level 1) to both STO inputs. After this a new
start command has to be given to turn the motor. It can be disabled by connecting the
jumper located on the controller’s PCB. After that user should disable the function through
Roborun+ Utility or serial command (check command section).

Constraints when using STO

•	 The STO feature is only approved for use with Brushless DC or AC Induction motors.
•	 All voltages attached to the controller need to fulfil SELV or PELV requirements.
•	 After first installation and at least every 3 months the test as described in chapter

14 has to be conducted.

STO Failure Messages
In case a failure is detected in the STO circuit the following failure message will be visible
according on how the user operates the controller.

1.	 Status LED on Controller

The status LED pattern will be the below in case of STO failure

FIGURE 2-9. STO fault status LED pattern

2.	 STO Fault LED at Roborun+ utility in failure

FIGURE 2-10. STO fault position in Fault Flags

Safety Recommendations

42	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

This failure can have several internal and external reasons. If the failure is shown please
check the cabling and the signals to STO 1 and STO 2. Both signals much have at all times
the same level.

•	 Check that the STO jumper is set correctly and STO is configured correctly
•	 Check wiring
•	 Check cabling for short circuits or open circuits

If the failure persists, contact Roboteq support.

IMPORTANT WARNING

Same status LED pattern is used for undervoltage and overvoltage faults and that
should not be confusing. If STO fault appear it is normal for the controller voltage to
be off and undervoltage fault to trigger. Either way this Status LED pattern indicates
a situation that should be treated with caution.

Firmware implementation
The STO circuit will operate regardless of the MCU activity. However, when operating
normally the MCU will perform the following functions:

1.	 Self-test that the STO circuits, switches and the power MOSFETs are functional.
This is done every time the controller is powered on. It can also be done at any time
using command STT (see STT - STO Self-Test, page 208) from the system’s PC or
PLC. The self-test can also be initiated by the controller itself using its scripting lan-
guage, at periodic time intervals, or any other user-define rule(s).

If the self-test fails, the controller will stop driving the MOSFETs and set a fault flag
that can be monitored by the PLC/Computer. It can also activate one of its digital
outputs to indicate the fault.

2.	 The STO inputs are monitored continuously every 1ms. If one or both STO inputs are at
level zero and the MOSFET driver supply voltage has not dropped, an STO fault is detect-
ed. The STO fault flag is set. A user digital output can be activated to indicate the fault.

Installation – Maintenance
The STO circuit needs to be tested before first installation and at least every 3 months
according to the below sequence:

1.	 Activate STO (both logic level 0)

2.	 Check that STO is active (through Roborun+ Utility/Serial)

3.	 Check that there is no STO fault present (through Roborun+ Utility/Serial)

4.	 Deactivate STO 1 and STO 2 (both logic level 1)

5.	 Check that STO is not active and that there is no STO fault present (through Robo-
run+ Utility/Serial).

Safe Torque-Off (STO)

	 Advanced Digital Motor Controller User Manual� 43

SAFETY INSTALLATION

It is required that the controller has to be placed in an enclosure that can provide
IP54 protection.

SAFETY REGISTRATION

It is required that STO end user should follow up www.roboteq.com and register to
site/forum for any news about safety function.

STO Voltage source specification attention
In order to have maximum response at STO implementation, user/installer/integrator
should use voltage source with low output capacitance. In any other case, latency in
activation might occur.

Compliance and Safety Metrics
The STO function is compliant to:

•	 IEC 61800-5-2:2007, SIL 3
•	 IEC 61508:2010, SIL 3
•	 IEC 62061:2005, SIL 3
•	 ISO 13849-1:2015, Category 3 Performance Level e

TABLE 2-1. STO compliance and safety metrics

Metric acc. To IEC 61508, IEC 61800-5-2, IEC 62061 Value

SIL Up to 3

PFH 5 FIT

Mission Time and Proof Test Interval 20 years

Performance Level e

Category 3

MTTFD >100 years

http://www.roboteq.com

Safety Recommendations

44	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Technical Data

TABLE 2-2. STO technical data

Specification Value

STO Input High Level 6V to 30V

STO Input Low Level 0V to 1V

STO Response Time < 5msec

Operating Temperature -20°C to 55°C

Storage Temperature -20°C to 70°C

IP degree IP40

Humidity 5% to 95% non-condensing

Maximum altitude 2000m

STO cable length ≤ 3m (1)

EMC immunity According to IEC 61800-3:2017 and IEC
61800-5-2:2007 Annex E

CE Declaration of conformity Available at www.roboteq.com

All connected cables must have length <3m

http://www.roboteq.com

Controller Connections

	 Advanced Digital Motor Controller User Manual� 45

SECTION 3	 Connecting
Sensors and
Actuators to
Input/Outputs

This section describes the various inputs and outputs and provides guidance on how to
connect sensors, actuators or other accessories to them.

Controller Connections
The controller uses a set of power connections DSub and plastic connectors for all
necessary connections.

The power connections are used for connecting to the batteries and motor, and will typ-
ically carry large current loads. Details on the controller’s power wiring can be found at
“Connecting Power and Motors to the Controller” section of this manual.

The DSub and plastic connectors are used for all low-voltage, low-current connections to
the Radio, Microcontroller, sensors, and accessories. This section covers only the connec-
tions to sensors and actuators.

For information on how to connect the RS232 or the RS485 ports, see “Serial (RS232/
RS485/TCP/USB) Operation” section.

The remainder of this section describes how to connect sensors and actuators to the con-
troller’s low-voltage I/O pins that are located on the DSub and plastic connectors.

Connecting Sensors and Actuators to Input/Outputs

46	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Controller’s Inputs and Outputs
The controller includes several inputs and outputs for various sensors and actuators.
Depending on the selected operating mode, some of these I/Os provide command,
feedback and/or safety information to the controller.

When the controller operates in modes that do not use these I/Os, these signals are ig-
nored or can become available via the RS232/RS485/TCP/USB port for user application.
Below is a summary of the available signals and the modes in which they are used by the
controller. The actual number of the signal of each type, voltage or current specification,
and their position on the I/O connector is given in the controller datasheet.

TABLE 3-1. Controller’s IO signals and definitions

Signal I/O type Use/Activation

DOUT1
to
DOUTn

Digital Output - Activated when motor(s) is powered
- Activated when motor(s) is reversed
- Activated when overtemperature
- Activated when overvoltage
- Mirror Status LED
- Deactivates when output stage fault
- User activated (RS232/RS485/TCP/USB or via scripting)

DIN1
to
DINn

Digital Input - Quick Stop
- Emergency stop
- Motor Stop (deadman switch)
- Invert motor direction
- Forward or reverse limit switch
- Run MicroBasic Script
- Load Home counter
- Soft STO

AIN1
to
AINn

Analog Input - Command for the motor(s)
- Speed or position feedback
- �Trigger Action similar to Digital Input if under or over
user-selectable threshold

 - Motor Thermistor use
PIN1
to
PINn

Pulse Input - Command for the motor(s)
- Speed or position feedback
- �Trigger Action similar to Digital Input if under or over
user selectable threshold

ENC1a/b
to
ENC2a/b

Encoder Inputs - Speed or position feedback
- �Trigger action similar to Digital Input if under or over
user-selectable count threshold

Connecting devices to Digital Outputs

	 Advanced Digital Motor Controller User Manual� 47

Connecting devices to Digital Outputs
Depending on the controller model, 2 to 8 Digital Outputs are available for multiple
purposes. The Outputs are Open Drain MOSFET type capable of driving loads up to
30V/1A. For selected models the digital outputs can be configured in order to be high
side drivers at 5 Volts or at 24 Volts (For more details see configuration commands DOT -
Digital Output Type and AUXV - Digital Output High Side Drive Voltage Level and the
respective controller’s datasheet).

At the Open Drain configuration, the output will be pulled to ground when activated. Thus,
the load must be connected between the controller’s output and a positive voltage source
(e.g. a 24V battery).

Connecting Resistive Loads to Outputs
Resistive or other non-inductive loads can be connected simply as shown in the diagram
below.

Up to
24V
DC

DOUT Internal
Transistor

Lights, LEDs, or any other
non-inductive load

Ground

+

-

FIGURE 3-1. Connecting resistive loads to Dout pins

Connecting Inductive loads to Outputs
The diagrams on Figure 3-2 show how to connect a relay, solenoid, valve, small motor, or
other inductive load to a Digital Output:

Up to
24V
DC

DOUT
Internal
Transistor

Relay, Valve
Motor, Solenoid
or other Inductive Load

Ground

+

-

FIGURE 3-2. Connecting inductive loads to Dout pins

Connecting Sensors and Actuators to Input/Outputs

48	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Important Warning

Overvoltage spikes induced by switching inductive loads, such as solenoids or re-
lays, will destroy the transistor unless a protection diode is used.

Connecting Switches or Devices to Inputs shared with Outputs

On HBLG2XXX controllers, Digital inputs DIN12 to DIN19 share the connector pins with digital
outputs DOUT1 to DOUT8. When the digital outputs are in the Off state, these outputs can be
used as inputs to read the presence or absence of a voltage at these pins.

Input
Buffer

+5V Out

GND

Output
Driver

1K
to
10K

50K

DIN12 to DIN19
(DOUT1 to DOUT7)

FIGURE 3-3. Switch wiring to inputs shared with outputs

For better noise immunity, an external pull up resistor should be installed even though one
is already present inside the controller.

Important Warning

Do not activate an output when it is used as input. If the input is connected directly
to a positive voltage when the output is activated, a short circuit will occur. Always
pull the input up via a resistor.

Connecting Switches or Devices to direct Digital Inputs
The controller Digital Inputs are high impedance lines with a pull down resistor built into
the controller. Therefore it will report an Off state if unconnected, A simple switch as
shown in Figure 3-4 can be used to activate it. When a pull up switch is used, for better
noise immunity, an external pull down resistor should be installed even though one is
already present inside the controller.

33kOhm
1K
to
10K

5V Out

20kOhm

DIN

Ground

FIGURE 3-4. Pull up (Active High) switch wirings to DIN pins

Connecting a Voltage Source to Analog Inputs

	 Advanced Digital Motor Controller User Manual� 49

A pull up resistor must be installed when using a pull down switch.

33kOhm

5V Out

20kOhm

1K to
10K
Ohm

Ground

DIN

FIGURE 3-5. Pull down (Active Low) switch wirings to DIN pins

Connecting a Voltage Source to Analog Inputs
Connecting sensors with variable voltage output to the controller is simply done by
making a direct connection to the controller’s analog inputs. When measuring absolute
voltages, configure the input in “Absolute Mode” using the PC Utility.

0-5V
Source

Internal Resistors
and Converter

+5V

Ground

AIN
A/D

20kOhm

33kOhmV

FIGURE 3-6. 0-5V Voltage source connected to Analog inputs

Using external resistors, it is possible to alter the input voltage range to 0V/10V or
-10V/+10V.

33kOhm

20kOhm

Internal Resistors
and Converter

+5V

Ground

A/D

4.7kOhm

0-10V

4.7kOhm

FIGURE 3-7. External resistor circuit for 0 to 10V capture range

Connecting Sensors and Actuators to Input/Outputs

50	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

33kOhm

20kOhm

Internal Resistors
and Converter

+5V

Ground

A/D

10kOhm 4.7KOhm

+/-10V

10kOhm

FIGURE 3-8. External resistors circuit for -10V to 10V capture range

Important Notice

Activating the pulse mode on input will also enable a pull up resistor on that input.
If the input is also used for analog capture, the analog reading will be wrong. Make
sure the pulse mode is disabled on that input.

Reducing noise on Analog Inputs
The Analog inputs are very fast and have a high input resistance. They will therefore
easily be disturbed by ambient electrical noise and this will cause the analog reading to
be fluctuating. Use shielded cables between the input and the analog sensor. Add a 1uF
capacitor between the input pin and the GND pin. With good shielding and filtering, a
signal stable to withing +/-5V or better can generally be achieved.

Connecting Potentiometers to Analog Inputs
Potentiometers mounted on a foot pedal or inside a joystick are an effective method for
giving the command to the controller. In closed loop mode, a potentiometer is typically
used to provide position feedback information to the controller.

Connecting the potentiometer to the controller is as simple as shown in the diagram in
Figure 3-9.

The potentiometer value is limited at the low end by the current that will flow through it
and which should ideally not exceed 5 or 10mA. If the potentiometer value is too high,
the analog voltage at the pot’s middle point will be distorted by the input’s resistance to
ground of 53K. A high value potentiometer also makes the input sensitive to noise, partic-
ularly if wiring is long. Potentiometers of 1K or 5K are recommended values.

Connecting a Voltage Source to Analog Inputs

	 Advanced Digital Motor Controller User Manual� 51

1K to 10K
Ohm Pot

Internal Resistors
and Converter

+5V

Ground

A/D

20kOhm

33kOhm

FIGURE 3-9. Potentiometer wiring

Because the voltage at the potentiometer output is related to the actual voltage at the
controller’s 5V output, configure the analog input in “Relative Mode”. This mode measures
the actual voltage at the 5V output in order to eliminate any imprecision due to source
voltage variations. Configure using the PC Utility.

Connecting Potentiometers for Commands with Safety band guards
When a potentiometer is used for sensing a critical command (Speed or Brake, for
example) it is critically important that the controller reverts to a safe condition in case
wiring is sectioned. This can be done by adding resistors at each end of the potentiometer
so that the full 0V or the full 5V will never be present, during normal operation, when the
potentiometer is moved end to end.

Using this circuit shown below, the Analog input will be pulled to 0V if the two top wires
of the pot are cut, and pulled to 5V if the bottom wire is cut. In normal operation, using
the shown resistor values, the analog voltage at the input will vary from 0.2V to 4.8V.

5K Ohm Pot

Internal Resistors
and Converter

+5V220 Ohm

220 Ohm Ground

A/D

20kOhm

33kOhm

FIGURE 3-10. Potentiometer wiring in Position mode

Connecting Sensors and Actuators to Input/Outputs

52	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

The controller’s analog channels are configured by default so that the min and max com-
mand range is from 0.25V to 4.75V. These values can be changed using the PC configura-
tion utility. This ensures that the full travel of the pot is used to generate a command that
spans from full min to full max.

If the Min/Max safety is enabled for the selected analog input, the command will be con-
sidered invalid if the voltage is lower than 0.1V or higher than 4.9. These values cannot be
changed.

Connecting External Thermistor to Analog Inputs
The analog inputs can be used to read thermistor sensors. In order to set it up, the
following steps must be followed:

•	 Connect the sensor with a pull-up resistor (value 10KOhm) to the 5Volt supply, as
shown in FIGURE 3-11.

•	 Use the R25 and B25 parameters of the sensor in the Motor Thermistor and
configure accordingly the respective configuration commands (see B25 -
Thermistor Temperature Coefficient ββ25 and R25 - Thermistor Resistance at
25oC) along with the overtemperature limit (see OTL - Over Temperature Limit).

•	 Set the conversion type of the Analog input to Absolute (see AMOD).
•	 Set Input Use to Motor Temperature.
•	 Select which motor channel should be used (see AINA).
•	 After the successful configuration, the motor temperatures can be read using the

Temperature query (see T - Read Temperature).

33kOhm

20kOhm

Internal Resistors
and Converter

+5V

Ground

A/D

10kOhm

10kOhm
NTC

Thermistor

FIGURE 3-11. NTC Thermistor wiring diagram

The firmware uses Steinhart-Hart method to implement the temperature estimation from
a thermistor. According to the simplified model the temperature can be estimated by the
following formula:

Using the Analog Inputs to Monitor External Voltages

	 Advanced Digital Motor Controller User Manual� 53

Where:

•	 R(Ω) is the measured resistance of the thermistor,
•	 T(Kelvin) is the estimated temperature,
•	 T25 = 298K (25oC),
•	 R25(Ω) is the resistance in T25 temperature and
•	 β25(Kelvin) is the temperature coefficient.

The last two are characteristics of the thermistor. They can be derived out of their
datasheet and set to the respective R25 and B25 configuration commands.

Temperature coefficient (ββ25) estimation

Temperature coefficient is temperature dependent and is specified for the range between
two temperature points, where the model will provide better accuracy.

•	 Some manufactures specify β as BT1/T2, where T1 and T2 are the two temperatures
mentioned above.

•	 Other manufacturers give a Resistance - Temperature table from which T1 and T2
can be chosen to derive β from the following formula:

where RT1 and RT2 are the resistances of the thermistor in T1 and T2 temperatures
accordingly.

In both cases, T1 should be chosen equal to T25 = 298K, thus RT1 = R25 and β = β25. The
formula ends up in the following form:

A typical β25 could be:

Note that β25 is negative in case of PTC thermistors and positive in case of NTC
thermistors.

Using the Analog Inputs to Monitor External Voltages
The analog inputs may also be used to monitor the battery level or any other DC voltage. If
the voltage to measure is up to 5V, the voltage can be brought directly to the input pin. To

Connecting Sensors and Actuators to Input/Outputs

54	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

measure higher voltage, insert two resistors wired as a voltage divider. The figure shows a
10x divider capable of measuring voltages up to 50V.

47kOhm

IN
Ext Voltage

4.7kOhm

Internal Resistors
and Converter

A/D

33kOhm

20kOhm

+5V

Ground
FIGURE 3-12. Battery Voltage monitoring circuit

Connecting Sensors to Pulse Inputs
The controller has several pulse inputs capable of capturing Pulse Length, Duty Cycle or
Frequency with excellent precision. Being a digital signal, pulses are also immune to noise
compared to analog inputs.

Important Notice

On newer motor controllers models, activating the pulse mode on input will also
enable a pull up resistor on that input. If the input is also used for analog capture,
the analog reading will be wrong.

Connecting to RC Radios
The pulse inputs are designed to allow direct connection to an RC radio without additional
components.

Controller
Power

Optional
Power
to
Radio

R/C Radio

R/C Channel 1

R/C Channel 2

R/C Radio Ground
Controller
Ground

5V Out

MCU

FIGURE 3-13. RC Radio powered by controller electrical diagram

Connecting SSI Sensors

	 Advanced Digital Motor Controller User Manual� 55

Connecting to PWM Joysticks and Position Sensors
The controller’s pulse inputs can also be used to connect to sensors with PWM outputs.
These sensors provide excellent noise immunity and precision. When using PWM
sensors, configure the pulse input in Duty Cycle mode. Beware that the sensor should
always be pulsing and never output a steady DC voltage at its ends. The absence of
pulses is considered by the controller as a loss of signal.

Connecting SSI Sensors

SSI Sensors Overview
SSI sensors are absolute encoders that send their data using Synchronous Serial Interface
(SSI). Using SSI protocol offers reduced wiring and EMI immunity. Being absolute
encoders, the SSI sensors will report a signal respective to the shaft position. They can be
found in both multi-turn and single-turn variations. Roboteq controllers support both (multi-
turn and single-turn versions) with a frame size up to 47 bits.

Connecting the SSI Sensor
SSI Sensors connect directly to pins present on the controller’s connector. The connector
provides 5V power to the sensors and has inputs for the two data and the two clock
signals for each sensor. The figure below shows the connection to the SSI Sensor.

FIGURE 3-14. Controller Connection to typical SSI Encoder

Connecting Sensors and Actuators to Input/Outputs

56	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

SSI Sensor Clock Polarity
The supported SSI sensors that can be used should have positive clock polarity.

FIGURE 3-15. SSI frame with positive clock

If the polarity is negative there is a workaround described below in order to make them
work.

If the sensor has 12 bits and the clock polarity is negative, the following steps need to be
performed:

1. Swap Clk+ and Clk- (This will invert the clock polarity but it will ignore one bit)

2. Configure SSI/SPI Number of bits: 13 (so increased by 1 in order to fix the ignored bit)

3. Counter start bit position: 1

4. Counter number of bits: 12

FIGURE 3-16. SSI frame with negative clock and clk signals inverted

Connecting Optical Encoders

Optical Incremental Encoders Overview
Optical incremental encoders are a means for capturing speed and traveled distance on
a motor. Unlike absolute encoders which give out a multi-bit number (depending on the
resolution), incremental encoders output pulses as they rotate. Counting the pulses tells
the application how many revolutions, or fractions of, the motor has turned. Rotation
velocity can be determined from the time interval between pulses or by the number of
pulses within a given time period. Because they are digital devices, incremental encoders
will measure distance and speed with perfect accuracy.

Connecting Optical Encoders

	 Advanced Digital Motor Controller User Manual� 57

Since motors can move in forward and reverse directions, it is necessary to differentiate
the manner that pulses are counted so that they can increment or decrement a position
counter in the application. Quadrature encoders have dual channels, A and B, which are
electrically phased 90° apart. Thus, the direction of rotation can be determined by monitor-
ing the phase relationship between the two channels. In addition, with a dual-channel en-
coder, a four-time multiplication of resolution is achieved by counting the rising and falling
edges of each channel (A and B). For example, an encoder that produces 250 Pulses per
Revolution (PPR) can generate 1,000 Counts per Revolution (CPR) after quadrature.

1 Pulse
= 4 Transitions
= 4 Counts

A Channel

Count Up Count Down

B Channel

Quadrature
Signal

FIGURE 3-17. Quadrature encoder output waveform

The figure below shows the typical construction of a quadrature encoder. As the disk ro-
tates in front of the stationary mask, it shutters light from the LED. The light that passes
through the mask is received by the photo detectors. Two photo detectors are placed side
by side at so that the light making it through the mask hits one detector after the other to
produces the 90o phased pulses.

LED light source

Stationary mask

Photodetector

Rotating
encoder disk

FIGURE 3-18. Typical quadrature encoder construction

Unlike absolute encoders, incremental encoders have no retention of absolute position
upon power loss. When used in positioning applications, the controller must move the
motor until a limit switch is reached. This position is then used as the zero references for
all subsequent moves.

Recommended Encoder Types
The module may be used with most incremental encoder modules as long as they include
the following features:

•	 Two quadrature outputs (Ch A, Ch B), single ended
•	 3.8V minimum swing between 0 Level and 1 Level on quadrature output
•	 5VDC operation. 50mA or less current consumption per encoder

More sophisticated incremental encoders with index and other features may be used,
however these additional capabilities will be ignored.

Connecting Sensors and Actuators to Input/Outputs

58	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

The choice of encoder resolution is very wide and is constrained by the module’s maxi-
mum pulse count at the high end and measurement resolution for speed at the low end.

Specifically, the controller’s encoder interface can process 1 million counts per second,
unless otherwise specified in the product datasheet.

Commercial encoders are rated by their numbers of “Pulses per Revolution” (also some-
times referred to as “Number of Lines” or “Cycles per Revolution”). Carefully read the
manufacturer’s datasheet to understand whether this number represents the number of
pulses that are output by each channel during the course of a 360 degrees revolution rath-
er than the total number of transitions on both channels during a 360 degrees revolution.
The second number is 4 times larger than the first one.

The formula below gives the pulse frequency at a given RPM and encoder resolution in
Pulses per Revolution.

				 Pulse Frequency in counts per second = (RPM/60)*PPR*4

Example: a motor spinning at 10,000 RPM max, with an encoder with 200 Pulses per Rev-
olution would generate:

10,000 / 60 * 200 * 4 = 133.3 kHz which is well within the 1MHz maximum supported by
the encoder input.

An encoder with 200 Pulses per Revolutions is a good choice for most applications.

A higher resolution will cause the counter to count faster than necessary and possibly
reach the controller’s maximum frequency limit.

An encoder with a much lower resolution will cause speed to be measured with less precision.

Connecting the Encoder
Encoders connect directly to pins present on the controller’s connector. The connector
provides 5V power to the encoders and has inputs for the two quadrature signals from
each encoder. The figure below shows the connection to the encoder.

Encoder
Controller

GND

5V Out

ENC1A (ENC2A)

Ch A

Ch B
ENC1B (ENC2B)

5V

GND

FIGURE 3-19. Controller connection to typical Encoder

Connecting the Encoder

	 Advanced Digital Motor Controller User Manual� 59

For several controller models, the Encoder inputs are by default mapped in Molex connec-
tor. In order to be able to use encoders and SSI sensors at the same time (see “MLX” in
the command reference section), the encoders can be mapped to DB25 connector pins
where pulse inputs are.

Cable Length and Noise Considerations
The cable should not exceed one 3’ (one meter) to avoid electrical noise to be captured
by the wiring. A ferrite core filter should be inserted near the controller for length beyond
2’ (60 cm). For longer cable length use an oscilloscope to verify signal integrity on each of
the pulse channels and on the power supply.

Ferrite Core
Encoder

Controller

 FIGURE 3-20. Use ferrite core on cable length beyond 2’ or 60cm

Important Warning

Excessive cable length will cause electrical noise to be captured by the controller
and cause erratic functioning that may lead to failure. In such a situation, stop oper-
ation immediately.

Motor - Encoder Polarity Matching
When using encoders for closed loop speed or position control, it is imperative that when
the motor is turning in the forward direction, the counter increments its value and a
positive speed value is measured. The counter value can be viewed using the PC utility.

If the Encoder counts backward when the motor moves forward, correct this by either:

1- Swapping Channel A and Channel B on the encoder connector. This will cause the en-
coder module to reverse the count direction,

2- Enter a negative number in the PPR configuration will also cause the counter to count
in the reverse direction

3- Swapping the leads on the motor. This will cause the motor to rotate in the opposite
direction.

Basic Operation

	 Advanced Digital Motor Controller User Manual� 61

SECTION 4	 I/O Configuration
and Operation

This section discusses the controller’s digital and analog inputs and output and how they
can be used.

Basic Operation

The controller’s operation can be summarized as follows:

•	 Receive commands from a radio receiver, joystick or a microcomputer
•	 Activate the motor according to the received command
•	 Perform continuous check of fault conditions and adjust actions accordingly
•	 Report real-time operating data

The diagram below shows a simplified representation of the controller’s internal operation.
The most noticeable feature is that the controller’s serial, digital, analog, pulse, and encod-
er inputs may be used for practically any purpose.

Input Capture
and

Switchbox

Command
Priority

Selection Motor
Command

Output
Driver

RS232/RS485/USB

CAN/EtherCAT/Pro�net

Analog Inputs
Motor
Outputs

Digital
Outputs

Commands

Feedback

Estop/Limit Switches

Amps
Temperature

Voltages

Pulse Inputs

Digital Inputs

Encoder Inputs

Con�guration

Con�guration

Con�guration Con�gurationScript

FIGURE 4-1. Simplified representation of the controller’s internal operation

Safety Recommendations

62	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Practically all operating configurations and parameters can be changed by the user to
meet any specific requirement. This unique architecture leads to a very high number of
possibilities. This section of the manual describes all the possible operating options.

Input Selection
As seen earlier in the controller’s simplified internal operating diagram on Figure 4-1, any
input can be used for practically any purpose. All inputs, even when they are sharing the
same pins on the connector, are captured and evaluated by the controller. Whether input
is used, and what it is used for, is set individually using the descriptions that follow.

Important Notice

On shared I/O pins, there is nothing stopping one input to be used as analog or
pulse at the same time or for two separate inputs to act identically or in conflict
with one another. While such an occurrence is normally harmless, it may cause the
controller to behave in an unexpected manner and/or cause the motors not to run.
Care must be exercised in the configuration process to avoid possible redundant or
conflictual use.

Digital Inputs Configurations and Uses
Each of the controller’s digital Inputs can be configured so that they are active high or ac-
tive low. Each output can also be configured to activate one of the actions from the list in
the table below. In multi-channel controller models, the action can be set to apply to any
or all motor channels.

TABLE 4-1. Digital Input Action List

Action
Applicable
Channel Description

No Action - Input causes no action

Quick Stop Selectable

Stops the respective motor by controlling speed using Fault
Deceleration. The motor remains in Quick Stop until an idle
motor command is given (0 in case of speed modes, equal to
feedback in case of position modes).

Emergency stop All

Sets all the MOSFETs that drive the respective motor to
float. So no power is applied to the motor and the motor is
about to stop due to friction.

Motor Stop (deadman
switch) Selectable

Stops the respective motor by controlling speed using Fault
Deceleration. Motor resumes when input becomes inactive

Invert motor direction Selectable
Inverts the motor direction, regardless of the command
mode in use

Forward limit switch Selectable Stops the motor until the command is changed to reverse

Reverse limit switch Selectable Stops the motor until the command is changed forward

Run script NA Start execution of MicroBasic script

Load Home counter Selectable Load counter with a Home value

Soft STO Selectable Configure input to act as an STO input

Analog Inputs Configurations and Use

	 Advanced Digital Motor Controller User Manual� 63

Configuring the Digital Inputs and the Action to use can be done very simply using the PC
Utility.

Wiring instructions for the Digital Inputs can be found in “Connecting Switches or Devices
to Inputs shared with Outputs” on page 48

Analog Inputs Configurations and Use
The controller can do extensive conditioning on the analog inputs and assign them to a
different use.

Each input can be disabled or enabled. When enabled, it is possible to select the whether
capture must be an absolute voltage or relative to the controller’s 5V Output. Details on how
to wire analog inputs and the differences between the Absolute and Relative captures can
be found in “Using the Analog Inputs to Monitor External Voltages” page 54.

TABLE 4-2. Analog Capture Modes

Analog Capture Mode Description

Disabled Analog capture is ignored (forced to 0)

Absolute Analog capture measures real volts at the input

Relative Analog captured is measured relative to the 5V Output which is typically
around 4.8V to 5.1V depending on the controller model and the load.
Correction is applied so that an input voltage measured to be the same
as the 5V Output voltage is reported at 5.0V

The raw Analog capture then goes through a series of processing shown in the diagram
below.

Min/Max/Center

Analog
Input

Command

Selectable Action

Selectable Action

Feedback

Deadband Exponent Use
Select

AIn > Max

AIn < Min

FIGURE 4-2. Analog Input processing chain

Safety Recommendations

64	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Analog Min/Max Detection

An analog input can be configured so that an action is triggered if the captured value is
above a user-defined Maximum value and/or under a user-defined Minimum value. The ac-
tions that can be selected are the same as these that can be triggered by the Digital Input.
See the list and description in Table 4.1, “Digital Input Action List” on page 62.

Min, Max and Center adjustment

The raw analog capture is then scaled into a number ranging from -1000 to +1000 based
on user-defined Minimum, Maximum and Center values for the input. For example, setting
the minimum to 500mV, the center to 2000mV, and the maximum to 4500mV, will pro-
duce the output to change in relation to the input as shown in the graph below

Analog
Capture
Voltage

-1000

+1000

min

maxctr

Output

FIGURE 4-3. Analog Input processing chain

This feature allows capturing command or feedback values that match the available range
of the input sensor (typically a potentiometer).

For example, this capability is useful for modifying the active joystick travel area. The figure
below shows a transmitter whose joystick’s center position has been moved back so that the
operator has a finer control of the speed in the forward direction than in the reverse position.

New Desired
Center Position

Min
Forward

Min
Reverse

Max
Forward

Max
Reverse

FIGURE 4-4. Calibration example where more travel is dedicated to forward motion

Analog Inputs Configurations and Use

	 Advanced Digital Motor Controller User Manual� 65

Setting the center value to be the same as the min value makes the input capture only
commands in a positive direction. For example if Min = Center = 200 and Max = 4500,
the input will convert into 0 when 200 and below, and 1000 above 4500.

The Min, Max, and Center values are defined individually for each input. They can be easily
entered manually using the Roborun PC Utility. The Utility also features an Auto-calibration
function for automatically capturing these values.

Deadband Selection
The adjusted analog value is then adjusted with the addition of a deadband. This parameter
selects the range of movement change near the center that should be considered as a 0
command. This value is a percentage from 0 to 50% and is useful, for example, to allow some
movement of a joystick around its center position before any power is applied to a motor. The
graph below shows output vs input changes with a deadband of approximately 40%.

Input

-1000

+1000

Output

+1000

-1000

FIGURE 4-5. Effect of deadband on the output

Note that the deadband only affects the start position at which the joystick begins to take
effect. The motor will still reach 100% when the joystick is in its full position. An illustration
of the effect of the deadband on the joystick action is shown in Figure 4-6 below.

Centered
Position

Deadband
(no action) Min

Forward
Min

Reverse

Max
Forward

Max
Reverse

FIGURE 4-6. Effect of deadband on joystick position vs. motor command

The deadband value is set independently for each input using the PC configuration utility.

Safety Recommendations

66	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Command Correction
An optional exponential or a logarithmic adjustment can then be applied to the signal. The
exponential correction will make the commands change less at the beginning and become
stronger at the end of the joystick movement. The logarithmic correction will have a stron-
ger effect near the start and lesser effect near the end. The linear selection causes no
change to the input. There are 3 exponential and 3 logarithmic choices: weak, medium and
strong. The graph below shows the output vs input change with exponential, logarithmic
and linear corrections.

Input

-1000

+1000

Output

+1000

-1000

Linear

Logarithmic

Exponential

FIGURE 4-7. Effect of exponential / logarithmic correction on the output

The exponential or log correction is selected separately for each input using the PC Con-
figuration Utility.

Use of Analog Input

After the analog input has been fully processed, it can be used as a motor command or,
if the controller is configured to operate in a closed loop, as a feedback value (typically
speed or position).

Each input can therefore be configured to be used as command or feedback for any motor
channel(s). The mode and channel(s) to which the analog input applies are selected using
the PC Configuration Utility.

Pulse Inputs Configurations and Uses

The controller’s Pulse Inputs can be used to capture pulsing signals of different types.

TABLE 4-3. Pulse Inputs Capture Modes

Capture Mode Description Typical use

Disabled Pulse capture is ignored (forced to 0)

Pulse Measures the On time of the pulse RC Radio

Pulse Inputs Configurations and Uses

	 Advanced Digital Motor Controller User Manual� 67

TABLE 4-3. (continued)

Capture Mode Description Typical use

Duty Cycle Measures the On time relative to the

full On/Off period

Hall position sensors and joysticks with

pulse output

Frequency Measures the repeating frequency of

pulse

Encoder wheel

MagSensor

Gets Data from MagSensor

(MultiPWM, see section 5) Magnetic Sensor (MGS1600)

BMS

Gets Data from BMS (MultiPWM, see

section 5) Battery Management System (BMS1040)

Pulse Count Counts the number of Pulses1 Quadrature Encoder

Flow Sensor

Gets Data from FlowSensor

(MultiPWM, see section 5) Flow Sensor (FLW100)
1 The counter will increment every time a pulse is received. The count can be read using the PI query. In

order to reset the counter de-configure capture mode to disabled and then back to pulse count.

The capture mode can be selected using the PC Configuration Utility.

The captured signals are then adjusted and can be used as command or feedback accord-
ing to the processing chain described in the diagram below.

Min/Max/CenterCapture

Pulse
Input

Command

Feedback

Deadband Exponent Use
Select

FIGURE 4-8. Pulse Input processing chain

Except for the capture, all other steps are identical to those described for the Analog cap-
ture mode.

Use of Pulse Input
After the pulse input has been fully processed, it can be used as a motor command or,
if the controller is configured to operate in a closed loop, as a feedback value (typically
speed or position).

Each input can therefore be configured to be used as command or feedback for any motor
channel(s). The mode and channel(s) to which the analog input applies are selected using
the PC Configuration Utility.

Safety Recommendations

68	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Digital Outputs Configurations and Triggers

The controller’s digital outputs can individually be mapped to turn On or Off based on the
status of user-selectable internal status or events. The table below lists the possible as-
signment for each available Digital Output.

TABLE 4-4. Digital Outputs action modes

Action Output activation Typical Use

No action
Not changed by any internal controller
events.

Output may be activated using
Serial commands or user scripts

Motor(s) is on
When selected motor channel(s) has power
applied to it. Brake release

Motor(s) is reversed
When selected motor channel(s) has power
applied to it in reverse direction. Back-up warning indicator

Overvoltage When battery voltage above over-limit Shunt load activation

Overtemperature When over-temperature limit exceeded Fan activation. Warning buzzer

Status LED When status LED is ON
Place Status indicator in visible
location.

Encoder Configurations and Use
On controller models equipped with encoder inputs, external encoders enable a range
of precision motion control features. See “Connecting Optical Encoders” page 56 for a
detailed discussion on how optical encoders work and how to physically connect them to
the controller. The diagram below shows the processing chain for each encoder input.

32-bit
up/down
Counter

Speed
Measure

Encoder
Input

Selectable Action

Selectable Action

Count

Speed in RPM

Max RPM

Feedback

Use
Select

Count > Max

Count < Min

Scalling

Encoder PPR

FIGURE 4-9. Encoder input processing

The encoder’s two quadrature signals are processed to generate up and down counts
depending on the rotation direction. The counts are then summed inside a 32-bit counter.
The counter can be read directly using serial commands and/or can be used as a position
feedback source for the closed loop position mode.

SSI Configuration and Use

	 Advanced Digital Motor Controller User Manual� 69

The count information is also used to measure rotation speed. Using the Encoder Pulse
Per Rotation (PPR) configuration parameter, the output is a speed measurement in actual
RPM that is useful in closed loop speed modes where the desired speed is set as a nu-
merical value, in RPM, using a serial command.

Configuring the encoder parameters is done easily using the PC Configuration Utility.

SSI Configuration and Use
On controller models equipped with SSI sensor inputs, SSI sensors enable a range of
precision motion control features. See “Connecting SSI Sensors” page 56 for a detailed
discussion on how SSI sensors work and how to physically connect them to the controller.
The diagram below shows the processing chain for each encoder input.

FIGUER 4-10. SSI Sensor input processing

The SSI sensor’s signal is processed to generate up and down counts depending on the
rotation direction. The counts are then summed inside a 32-bit counter. The counter can
be read directly using serial commands and/or can be used as a position feedback source
for the closed loop position mode.

Also taking into consideration that SSI sensors are absolute sensors, the sensor can be
configured in order to indicate the absolute position of the rotor shaft (Absolute Feed-
back). In that case, the counter holds the absolute position of the rotor shaft.

The count information is also used to measure rotation speed. Using the SSI Sensor
Counter number of bits (SLEN) configuration parameter, the output is a speed
measurement in actual RPM that is useful in closed loop speed modes where the desired
speed is set as a numerical value, in RPM, using a serial command.

Configuring the SSI Sensor parameters is done easily using the PC Configuration Utility.

Safety Recommendations

70	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

The SSI configuration commands provide support for multiturn encoders. The user can
configure the length and position of the angle counter and the multiturn counter even
when the sensor has extra status bits. The raw frame of the sensor can be retrieved using
the SRF query. See below the configuration fields used for that purpose:

•	 SSI Clock Speed (SCLK), it is common for all SSI sensor inputs
•	 SSI/SPI Number of bits (SLEN), the total number of bits of the SSI sensor frame.
•	 Counter start bit position (SSTA), the position of the first bit of the angle counter.
•	 Counter number of bits (SCLE), the number of bits of the angle counter.
•	 Multi-turn counter start bit position (MSTA), the position of the first bit of the multi-

turn counter.
•	 Multi-turn counter number of bits (MCLE), the number of bits of the multi-turn

counter.

FIGURE 4-11. SSI Sensor Configuration

Configuration Examples:

a. 12-bit encoder without multi-turn or status bits

^SLEN 1 12: Total number of bits is 12

^SSTA 1 1: The angle counter starts at bit 1

^SCLE 1 12: The resolution (length) of the counter is 12 bits.

b. �12-bit encoder without multi-turn and 2 status bits at LSB (12bit Angle, 2bit Status)

^SLEN 1 14: Total number of bits is 14

^SSTA 1 3: The angle counter starts at bit 3

^SCLE 1 12: The resolution (length) of the counter is 12 bits.

Hall and other Rotor Sensor Inputs

	 Advanced Digital Motor Controller User Manual� 71

c. �12-bit encoder with 12-bit multi-turn counter and no status bits (12bit Multi-turn,12bit
Angle Counter)

^SLEN 1 12: Total number of bits is 24

^SSTA 1 1: The angle counter starts at bit 1

^SCLE 1 12: The resolution (length) of the counter is 12 bits.

^MSTA 1 13: The angle counter starts at bit 13

^MCLE 1 12: The resolution (length) of the counter is 12 bits.

d. �16-bit encoder with 12-bit multi-turn counter and 2-bit status bits (12bit Multi-turn, 16bit
Angle Counter, 2bit Status)

^SLEN 1 30: Total number of bits is 30

^SSTA 1 3: The angle counter starts at bit 3

^SCLE 1 16: The resolution (length) of the counter is 16 bits.

^MSTA 1 18: The angle counter starts at bit 18

^MCLE 1 12: The resolution (length) of the counter is 12 bits.

Hall and other Rotor Sensor Inputs
The Hall or other Rotor position sensor that is used to switch power around the motor
windings, are also used to measure speed and distance traveled.

Speed is evaluated by measuring the time between transition of the Hall Sensors. A 32 bit
up/down counter is also updated at each Hall Sensor transition.

Speed information picked up from the Hall Sensors can be used for closed loop speed op-
eration without any additional hardware.

Sensor Min Max values
Each Encoder counter, SSI Sensor Counter or Internal Sensor Counter counter can be
compared to the respective user-defined Min and/or Max values and trigger an action if
these limits are reached. The type actions are the same as these selectable for Digital In-
puts and described in “Digital Inputs Configurations and Use” page 62.

Relative Speed
The speed information is also scaled to produce a number ranging from -1000 to +1000
relative to a user-configured arbitrary Max RPM value. For example, with the Max RPM
configured as 3000 and the motor rotating at 1500 RPM, the measured relative speed will
be 500. Relative speed is useful for closed loop speed mode that uses Analog or Pulse
inputs as speed commands.

Safety Recommendations

72	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Brake Release

Each digital output can be connected to a brake solenoid and control it by setting the
output’s action to “Motor is ON” using the Roborun+ utility. In that case when there is
a non-idle motor command the DOUT is activated and the brake is released. When the
motor command becomes idle (0 in case of speed modes, equal to feedback in case of
position modes) and the motor stops moving, then the DOUT is deactivated and the brake
is engaged.

A delay has been introduced from the time that the motor stops until engaging the brake.
The delay time is configurable, and its purpose is to ensure that the motor is on equilibri-
um before engaging the brake (for more details see BKD - Brake activation delay in ms,
in page 341).

The user has the ability to override the above-mentioned brake functionality by using the run-
time command BRK (or more details see BRK - Brake Override, in page 191). That way, the
motor brake can be immediately engaged by setting the BRK parameter to 2 and it can be im-
mediately disengaged skipping the brake delay, by setting the BRK parameter to 1. Setting the
BRK parameter to 0 will return the brake control to the previous automatic mode.

A general overview of the handling of the brake functionality (Motor is on) and the brake
override can be seen in the figure below:

FIGURE 4-12. Brake (Motor Is On) functionality

Brake Release

	 Advanced Digital Motor Controller User Manual� 73

Some boards have special outputs (Brk+, Brk-) that can activate the brake by using PWM
instead of providing a constant voltage. That way a higher voltage can be initially applied
to energize the coil (for more details see BRV - Brake Release Voltage, in page 343), and
then reduced to a lower voltage level (for more details see BHV - Brake Hold Voltage, in
page 343), in order to maintain the brake released while consuming less energy. Between
the two steps there is a time delay which defines for how much time the Brake Release
voltage will be applied (for more details see BDT - Brake Delay Time, in page 344).

FIGURE 4-12. Brake drive circuit and connection

The configuration is similar since the brake outputs are shared with digital outputs. For
more details see product’s datasheet.

Introduction to MGS1600 Magnetic Guide Sensor

	 Advanced Digital Motor Controller User Manual� 75

SECTION 5	 Roboteq Products
Connection and
Operation

This section discusses how to interface one or more Roboteq’s products to the motor
controller. For the moment the supported products are:

•	 Magnetic or Optical Sensor (MGS(W)1600, MSW3200, MGSW4800, OTS1600),
•	 FlowSensor (FLW100),
•	 Battery Management System (BMS10X0).

Details of each of the above products’ operation can be found in the products’ datasheets.

Introduction to MGS1600 Magnetic Guide Sensor
Roboteq’s Magnetic Guide Sensor is a sensor capable of detecting and reporting the posi-
tion of a magnetic field along its horizontal axis. The sensor is intended for applications in
Automatic Guided Vehicles using inexpensive adhesive magnetic tape to form a guide on
the floor. The tape creates an invisible field that is immune to dirt and unaffected by light-
ing conditions. The sensor can be interfaced directly to any of Roboteq’s motor controllers
in order to create an effective AGV solution with just two components.

The sensor generates the following information about the track:

	• Tape Detect

	• Position of Left Track

	• Position of Right Track

	• Presence of Left Marker

	• Presence of Right Marker

Magnetic Guide Sensor Connection and Operation

76	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Introduction to FLW100 Flowsensor
Roboteq’s FLW100 is a high-resolution sensor especially designed for accurate contact-
less X-Y motion sensing over a surface. The FLW100 is intended as a navigation sensor for
a wheeled mobile robot. The sensor works similarly to an optical mouse, but with higher
resolution, accuracy and at a greater distance from the reference surface. The sensor uses
an embedded infrared camera that is pointed to the floor and measures the displacement
distance and speed along the X and Y axis by comparing images at each frame. Distance
is measured with 0.1mm resolution with excellent accuracy.

The sensor generates among others the following information:

•	 X axis distance in mm,
•	 Y axis distance in mm.

Introduction to BMS10X0 Battery Management System
RoboteQ’s BMS10x0 is a battery management and protection system for building cost-ef-
fective, ultra-efficient and high current power sources using Lithium battery cells. The
BMS connects to an array of battery cells at one end, and to a user load at the other. Avail-
able in a 40V and 60V versions, it is optimized for 6-cell to 15-cell battery packs.

The product generates among others the following information:

•	 BMS State of Charge in AmpHours (Ah),
•	 BMS State Of Charge in percentage,
•	 BMS Status Flags,
•	 BMS Switch States.

Available Interfaces
All the above data can be transmitted to the Roboteq controller and other devices using
one of the following methods:

TABLE 5-1. Available Interfaces between Roboteq Products

Method To Roboteq Controllers To PLCs To PCs

MultiPWM Preferred Unsuitable Unsuitable

Serial Not Recommended Preferred Suitable

CANbus Suitable Preferred Suitable(1)

USB N/A Unsuitable Suitable

Notes:

1: PC must be fitted with CAN adapter

MultiPWM interface
The recommended interfacing method to Roboteq motor controller is the MultiPWM
mode. As the name implies, this proprietary method uses a succession of variable duty-
cycle pulses to carry the data sent by the Magnetic sensor, the FlowSensor or the Battery
Management System.

Enabling MultiPWM Communication

	 Advanced Digital Motor Controller User Manual� 77

Any of the controller’s pulse input can be configured as a MultiPWM input. The diagram
below shows how simple this one-wire interfacing is.

Motor Controller

Sensor

MultiPWM

Pulse Input

G
N

D

5V Out or
7-30V Supply

FIGURE 5-1. One-wire interfacing using MultiPWM

Enabling MultiPWM Communication
Magnetic Sensor and Flow Sensor are set to MultiPWM mode in its factory default con-
figuration, while the Battery Management System needs to be explicitly configured. To
enable the capture, the selected pulse input on the controller must be configured to the
respective option when using the PC utility.

FIGURE 5-2. Multi-PWM configuration

When changing via the console use

^PMOD cc nn to enable pulse input cc in MultiPWM mode.

Where nn:

4: For Magnetic Sensor

5:For Battery Management System

7: For Flow Sensor

Magnetic Guide Sensor Connection and Operation

78	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Accessing Sensor Information
Once enabled, the pulses are sent continuously by the sensor 100 times per second. The
pulses are captured and parsed by the motor controller as they arrive. A real time mirror
image of sensor data is then present inside the controller. From there the sensor informa-
tion can be read using serial, USB, CAN or MicroBasic scripts like any other of the control-
ler’s operational parameters.

The following Motor Controller queries are available for reading the captured sensor data.

TABLE 5-2. Accessing Roboteq Sensor Information

Magnetic Sensor

?MGD Read tape detect

?MGT nn Read left track when nn= 1 or right track when nn= 2

?MGM nn Read left marker when nn=1 or right track when nn= 2

Flow Sensor

?FLW nn Read X Counter in mm when nn= 1 or Y Counter in mm when nn= 2

Battery Management System

?BMC Read BMS State Of Charge in AmpHours (Ah)

?BSC Read BMS State Of Charge in per cent

?BMF Read BMS status flags

?BMS Read BMS switch states

Details on these commands can be found in the Commands Reference section of this
manual

Connecting Multiple Similar Sensors
More than one similar sensors can be connected to a single motor controller. For Magnet-
ic sensors, this can be useful in AGV designs that must be able to move in the forward
and reverse direction along with the guide. Connecting multiple sensors can be done by
connecting each sensor to one of the available pulse input, as shown in the figure below.

G
N

D

Pu
ls

e
In

 1

Pu
ls

e
In

 2

Pu
ls

e
In

 n

7-30V Supply

Motor Controller

FIGURE 5-3. Connecting multiple sensors to a motor controller

Connecting Multiple Similar Sensors

	 Advanced Digital Motor Controller User Manual� 79

Accessing Multiple Sensor Information Sequentially
Two methods are available for accessing each sensor’s data when multiple sensors are
connected.

The first method is to only have one sensor enabled at any one time. This is done by en-
abling and disabling pulse inputs via serial commands or MicroBasic scripting. Examples:

^PMOD 1 0 : Serial command to Disable Sensor on pulse input 1

Setconfig(_PMOD, 1, 0) : Microbasic instruction to disable sensor on Pulse input 1

^PMOD 2 4 : Enable Sensor on Pulse input 2

Setconfig(_PMOD, 2, 4) : Microbasic instruction to enable sensor on Pulse input 2

The sensor information can then be accessed with the respective queries as discussed
above (?MGD, ?MGT, ?MGM, ?FLW).

Accessing Multiple Sensor Information Simultaneously
It is possible to have all sensors enabled at the same time by having their respective pulse
input configured accordingly.

When more than one pulse input is configured that way, the sensor data is accessible
using the ?MGD, ?MGT, ?MGM, ?MGY or ?FLW queries as follows, where x is the pulse
input number (1, 2, 3 etc.).

Reading Tape Detect

?MGD x or GetValue(_MGD, x)

Returns the Tape Detect state of Sensor at Pulse input x

Example:

?MGD 2 : Returns the Tape Detect state of Sensor 2

Reading Marker Detect

?MGM 2*(x-1)+1 or GetValue(_MGM, 2*(x-1)+1)

Returns the state of the Left Marker Detect state of Sensor at Pulse input x

?MGM 2*(x-1)+2 or GetValue(_MGM, 2*(x-1)+2)

Returns the state of the Right Marker Detect state of Sensor at Pulse input x

Examples:

?MGM 1 : Returns the Left Marker Detect state of Sensor at input 1

?MGM 2 : Returns the Right Marker Detect state of Sensor at input 1

Magnetic Guide Sensor Connection and Operation

80	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

?MGM 3 : Returns the Left Marker Detect state of Sensor at input 2

?MGM 4 : Returns the Right Marker Detect state of Sensor at input 2

Reading Track Positions

?MGT 3*(x-1)+1 or GetValue(_MGT, 3*(x-1)+1)

Returns the Left Track Position of Sensor at input x

?MGT 3*(x-1)+2 or GetValue(_MGT, 3*(x-1)+2)

Returns the Right Track Position of Sensor at input x

?MGT 3*(x-1)+3 or GetValue(_MGT, 3*(x-1)+3)

Returns the Active (Left or Right) Track Position of Sensor at input x

Examples:

?MGT 1 : Returns the Left Track Position of Sensor at input 1

?MGT 2 : Returns the Right Track Position of Sensor at input 1

?MGT 4 : Returns the Left Track Position of Sensor at input 2

?MGT 5 : Returns the Right Track Position of Sensor at input 2

?MGT 7 : Returns the Left Track Position of Sensor at input 3

Reading Flow Sensor Counters

?FLW 2*(z-1)+1 or GetValue(_FLW, 2*(z-1)+1)

Returns the Counter of the X axis of Sensor at Pulse input z,

?FLW 2*(z-1)+2 or GetValue(_FLW, 2*(z-1)+2)

Returns the Counter of the Y axis of Sensor at Pulse input z

Examples:

?FLW 1 : Returns the Counter of the X axis of Sensor at Pulse input 1

?FLW 2 : Returns the Counter of the X axis of Sensor at Pulse input 1

?FLW 3 : Returns the Counter of the Y axis of Sensor at Pulse input 2

?FLW 4 : Returns the Counter of the Y axis of Sensor at Pulse input 2

Input Command Modes and Priorities

	 Advanced Digital Motor Controller User Manual� 81

SECTION 6	 Command
Modes	

This section discusses the controller’s normal operation in all its supported operating
modes.

Input Command Modes and Priorities

The controller will accept commands from one of the following sources

•	 Serial data (RS232, RS485, TCP, USB)
•	 Pulse (R/C radio, PWM, Frequency)
•	 Analog signal (0 to 5V)
•	 Network Interface (CAN/EtherCAT/Profinet)
•	 Microbasic Script

One, many or all command modes can be enabled at the same time. When multiple
modes are enabled, the controller will select which mode to use based on a user select-
able priority scheme and the hardcoded priorities concerning the Network interface and
the Microbasic script. Setting the priorities is done using the PC configuration utility.

This scheme uses a priority table containing three parameters and let you select which
mode must be used in each priority order. During operation, the controller reads the first
priority parameter and switches to that command mode. If that command mode is found
to be active, that command is then used. If no valid command is detected, the controller
switches to the mode defined in the next priority parameter. If no valid command is recog-
nized in that mode, the controller then repeats the operation with the third priority param-
eter. If no valid command is recognized in that last mode, the controller applies a default
command value that can be set by the user (typically 0).

Brushless Motor Connections and Operation

82	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Set

Res
et

Serial/USB

Pulse

Analog

FIGURE 6-1. Controller’s possible command modes

In the Serial mode, the mode is considered as active if commands

•	 !G - Go to Speed or to Relative Position
•	 !MS - Stop in all modes
•	 !S - Set Motor Speed
•	 !TC - Target Torque
•	 !GIQ - Set Torque Amps
•	 !GID - Set Flux Amps

arrive within the watchdog timeout period via the RS232, RS485, TCP or USB ports. The
mode will be considered inactive, and the next lower priority level will be selected as soon
as the watchdog timer expires. Note that disabling the watchdog will cause the serial
mode to be always active after the first command is received, and the controller will never
switch to a lower priority mode.

If the above mentioned commands are called from a script then the Script mode is en-
abled and if they are called from either network the Network mode is enabled.

In the pulse mode, the mode is considered active if a valid pulse train is found and re-
mains present.

In analog mode, the mode is considered active at all time, unless the Center at Start safety
is enabled. In this case, the Analog mode will activate only after the joystick has been cen-
tered. The Keep within Min/Max safety mode will also cause the analog mode to become
inactive, and thus enable the next lower priority mode, if the input is outside of a safe range.

The example in Figure 6-1 shows the controller connected to a microcomputer, a RC ra-
dio, and an analog joystick. If the priority registers are set as in the configuration below:

	 1- Serial
	 2- Pulse
	 3- Analog

then the active command at any given time is given in the table below.

Input Command Modes and Priorities

	 Advanced Digital Motor Controller User Manual� 83

TABLE 6-1. Priority resolution example

Microcomputer
Sending commands

Valid Pulses
Received

Analog joystick
within safe Min/Max Command mode selected

Yes Don’t care Don’t care Serial

No Yes Don’t care RC mode

No No Yes Analog mode

No No No User selectable default value

Note that it is possible to set a priority level to “None”. For example, the priority table

	 1 - Serial
	 2 - RC Pulse
	 3 - None

will only arbitrate and use Serial or RC Pulse commands.

USB vs Serial Communication Arbitration
Commands may arrive through the RS232, RS485, TCP or the USB port at the same
time. They are executed as they arrive in a first come first served manner. Commands
that are arriving via USB are replied on USB. Commands arriving via the RS232 are re-
plied on the RS232 and so on. Redirection symbol for redirecting outputs to the other
port exists (e.g. a command can be made to respond on USB even though it arrived on
RS232).

Network Commands Arbitration
On controllers fitted with a Network interface, commands are processed as they arrive
regardless if any other mode, apart from Script mode, is active at the same time. Network
mode has the highest priority from all other modes apart from script mode.

Commands issued from MicroBasic scripts

When sending a Motor command from a MicroBasic script, it will be interpreted by the
controller with higher priority than any other interface. If a serial command is received
from the serial/USB port at the same time a command is sent from the script, the script
command will prevail.

Important Warning

Script and CAN commands are also subject to the serial Watchdog timer. Script
commands have the highest priority and CAN commands similar priority to serial
commands as shown below:

TABLE 6-2. Command Priorities

Priority Mode Configurable

1 Script Mode No

2 Network Mode No

3, 4, 5

Serial Mode(RS232,RS485,TCP,USB)

Yes (see CPRI)Pulse Mode

Analog Mode

Brushless Motor Connections and Operation

84	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Operating the Controller in RC mode
The controller can be directly connected to an R/C receiver. In this mode, the speed or posi-
tion information is contained in pulses whose width varies proportionally with the joysticks’
positions. The controller mode is compatible with all popular brands of RC transmitters.

The RC mode provides the simplest method for remotely controlling a robotic vehicle: little
else is required other than connecting the controller to the RC receiver and powering it On.

Set

Res
et

FIGURE 6-2. R/C radio control mode

The speed or position information is communicated to the controller by the width of a
pulse from the RC receiver: a pulse width of 1.0 millisecond indicates the minimum joy-
stick position and 2.0 milliseconds indicates the maximum joystick position. When the
joystick is in the center position, the pulse should be 1.5ms.

1.05ms

min center maxjoystick position:

R/C pulse timing:
0.45ms

0.9ms

FIGURE 6-3. Joystick position vs. pulse duration default values

The controller has a very accurate pulse capture input and is capable of detecting
changes in joystick position (and therefore pulse width) as small as 0.1%. This res-
olution is superior to the one usually found in most low cost RC transmitters. The
controller will therefore be able to take advantage of the better precision and better

Operating the Controller in RC mode

	 Advanced Digital Motor Controller User Manual� 85

control available from a higher quality RC radio, although it will work fine with lesser
expensive radios as well.

Input RC Channel Selection
The controllers feature several inputs that can be used for pulse capture. See product
datasheet for an actual number of pulse input. Any RC input can be used as a command
for any motor channels. The controller’s factory default defines two channels for RC
capture (one input on single channel products). Which channel and which pin on the input
connector depends on the controller model and can be found in the controller’s datasheet.

Changing the input assignment is done using the PC Configuration utility.

Input RC Channel Configuration
Internally, the measured pulse width is compared to the reference minimum, center, and
maximum pulse width values. From this is generated a command number ranging from
-1000 (when the joystick is in the min. position), to 0 (when the joystick is in the center po-
sition) to +1000 (when the joystick is in the max position). This number is then used to set
the motor’ desired speed or position that the controller will then attempt to reach.

For best results, reliability, and safety, the controller will also perform a series of correc-
tions, adjustments and checks to the R/C commands, as described below.

Joystick Range Calibration
The Joystick min, max, and center position are adjustable. For best control accuracy, the
controller can be calibrated to capture and use your radio’s specific timing characteristics
and store them into its internal Flash memory. This is done using a simple calibration pro-
cedure described page 64.

Deadband Insertion
The controller allows for a selectable amount of joystick movement to take place around
the center position before activating the motors. See the full description of this feature at
“Deadband Selection” page 65

Command Correction
The controller can also be set to translate the joystick motor commands so that the motor
responds differently depending on whether the joystick is near the center or near the
extremes. Five different exponential or logarithmic translation curves may be applied.
Since this feature applies to the R/C, Analog and RS232 modes, it is described in detail in
“Command Correction” page 66, in the General Operation section of the manual.

Reception Watchdog
Immediately after it is powered on, if in the R/C mode, the controller is ready to receive
pulses from the RC radio.

If valid pulses are received on any of the enabled Pulse input channels, the controller will
consider the RC Pulse mode as active. If no higher priority command is currently active
(See “Input Command Modes and Priorities” page 79), the captured RC pulses will serve
to activate the motors.

Brushless Motor Connections and Operation

86	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

If no valid RC pulses reach the controller for more than 500ms, the controller no lon-
ger considers it is in the RC mode and a lower priority command type will be accepted
if present.

Important Warning

Some receivers include their own supervision of the radio signals and will move
their servo outputs to a safe position in case of signal loss. Using these types of re-
ceiver, the controller will always be receiving pulses even with the transmitter off.

Using Sensors with PWM Outputs for Commands
The controller’s Pulse inputs can be used with various types of angular sensors that use
contactless Hall technology and that output a PWM signal. These type of sensors are
increasingly used inside joysticks and will perform much more reliably, and typically with
higher precision than traditional potentiometers.

The pulse shape output from these devices varies widely from one sensor model to an-
other and is typically different from this of RC radios:

- They have a higher repeat rate, up to a couple of kHz.
- The min and max pulse width can reach the full period of the pulse

Care must therefore be exercised when selecting a sensor. The controller will accommo-
date any pulsing sensor as long as the pulsing frequency does not exceed 250Hz. The
sensor should not have pulses that become too narrow - or disappear altogether - at the
extremes of their travel. Select sensors with a minimum pulse width of 10us or higher.
Alternatively, limit mechanically the travel of the sensor to keep the minimum pulse width
within the acceptable range.

A minimum of pulsing must always be present. Without it, the signal will be considered as
invalid and lost.

Pulses from PWM sensors can be applied to any Pulse input on the controller’s connector.
Configure the input capture as Pulse or Duty Cycle.

A Pulse mode capture measures the On time of the pulse, regardless of the pulse period.

A Duty Cycle mode capture measures the On time of the pulse relative to the entire pulse
period. This mode is typically more precise as it compensates for the frequency drifts o
the PWM oscillator.

PWM signals are then processed exactly the same way as RC pulses. Refer to the RC
pulse paragraphs above for reference.

Operating the Controller In Analog Mode
Analog Command is the simplest and most common method when the controller is used
in a non-remote, human-operated system, such as Electric Vehicles.

Operating the Controller In Analog Mode

	 Advanced Digital Motor Controller User Manual� 87

Input Analog Channel Selection
The controller features 4 to 11 inputs, depending on the model type, that can be used for
analog capture. Using different configuration parameters, any Analog input can be used as
command for any motor channel.

Changing the input assignment is done using the PC Configuration utility. See “Analog In-
puts Configurations and Use” on page 63.

Input Analog Channel Configuration
An Analog input can be Enabled or Disabled. When enabled, it can be configured to cap-
ture absolute voltage or voltage relative to the 5V output that is present on the connector.
See “Analog Inputs Configurations and Use” on page 63.

Analog Range Calibration
If the joystick movement does not reach full 0V and 5V, and/or if the joystick center point
does not exactly output 2.5V, the analog inputs can be calibrated to compensate for this.
See “Min, Max and Center adjustment” on page 64 and “Deadband Selection”on page
65.

Using Digital Input for Inverting direction
Any digital input can be configured to change the motor direction when activated. See
“Digital Inputs Configurations and Uses” on page 62. Inverting the direction has the same
effect as instantly moving the command potentiometer to the same level the opposite
direction. The motor will first return to 0 at the configured deceleration rate and go to the
inverted speed using the configured acceleration rate.

Safe Start in Analog Mode
By default, the controller is configured so that in Analog command mode, no motor will
start until all command joysticks are centered. The center position is the one where the
input equals the configured Center voltage plus the deadband.

After that, the controller will respond to changes to the analog input. The safe start check
is not performed again until power is turned off.

Protecting against Loss of Command Device
By default, the controller is protected against the accidental loss of connection to the
command potentiometer. This is achieved by adding resistors in series with the potenti-
ometer that reduces the range to a bit less than the full 0V to 5V swing. If one or more
wires to the potentiometer are cut, the voltage will actually reach 0V and 5V and be con-
sidered a fault condition, if that protection is enabled. See “Connecting Potentiometers for
Commands with Safety band guards” on page 51.

Brushless Motor Connections and Operation

88	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Safety Switches
Any Digital input can be used to add switch-activated protection features. For example,
the motor(s) can be made to activate only if a key switch is turned On, and a passenger
is present on the driver’s seat. This is done using by configuring the controller’s Digital in-
puts. See “Digital Inputs Configurations and Uses” page 62.

Monitoring and Telemetry in RC or Analog Modes
The controller can be fully monitored while it is operating in RC or Analog modes. If direct-
ly connected to a PC via RS232, RS485, TCP or USB, the controller will respond to oper-
ating queries (Amps, Volts, Temperature, Power Out, ...) without this having any effect on
its response to Analog or RC commands. The PC Utility can therefore be used to visualize
in real time all operating parameters as the controller runs. See “Run Tab” in Roborun+
Utility User Manual.

In case the controller is not connected via a bi-directional link, and can only send infor-
mation one-way, typically to a remote host, the controller can be configured to output a
user-selectable set of operating parameters, at a user selectable repeat rate. See “Query
History Commands” on page 295.

MicroBasic scripting can also be used to generate a periodic text string containing param-
eters to monitor.

Using the Controller in Serial (USB/RS232/RS485/TCP) Mode
The serial mode allows full control over the controller’s entire functionality. The controller
will respond to a large set of commands. These are described in detail in “Serial (RS232/
RS485/USB/TCP) Operation” in Section 14.

Power Output Circuit Operation

	 Advanced Digital Motor Controller User Manual� 89

SECTION 7	 Motor Operating
Features and
Options

This section discusses the controller’s operating features and options relating to its motor
outputs.

Power Output Circuit Operation
The controller’s power stage is composed of high-current MOSFET transistors that are
rapidly pulsed on and off using Pulse Width Modulation (PWM) technique in order to deliv-
er more or less power to the motors. The PWM ratio that is applied is the result of a com-
putation that combines the user command and safety related corrections. In closed-loop
operation, the command and feedback are processed together to produce the adjusted
motor command. The diagram below gives a simplified representation of the controller’s
operation.

Motor
Command

Acceleraton
Decceleration

Channel
Mixing

Short
Detect

Channel
Mixing

Safety
Checks

Power
Output

Motor
Outs

Commands

Feedback

Estop,
Limit Switches,

...

Amps
Temperature

Voltages

ConfigurationConfigurationConfiguration

Configuration

Configuration

PWM

FIGURE 7-1. Simplified diagram of power output operation

Motor Operating Features and Options

90	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Global Power Configuration Parameters

PWM Frequency
The power MOSFETs are switched at 16kHz.

Overvoltage Protection
The controller includes a battery voltage monitoring circuit that will cause the output
transistors to be turned Off if the main battery voltage rises above a preset Over Voltage
threshold. The value of that threshold is set by default and may be adjusted by the user.
The default value and settable range is given in the controller model datasheet.

This protection is designed to prevent the voltage created by the motors during regenera-
tion to be “amplified” to unsafe levels by the switching circuit.

The controller will resume normal operation when the measured voltage drops below the
Over Voltage threshold minus a user definable hysteresis voltage, when Automatic Fault
Clearance is enabled (see FLCL - Automatic Fault Clearance).

The controller can also be configured to trigger one of its Digital Outputs when an Over
Voltage condition is detected. This Output can then be used to activate a Shunt load
across the VMot and Ground wires to absorb the excess energy if it is caused by regen-
eration. This protection is particularly recommended for a situation where the controller is
powered from a power supply instead of batteries.

Undervoltage Protection
In order to ensure that the power MOSFET transistors are switched properly, the control-
ler monitors the internal preset power supply that is used by the MOSFET drivers. If the
internal voltage drops below a safety level, the controller’s output stage is turned Off. The
rest of the controller’s electronics, including the microcomputer, will remain operational as
long as the power supply on VMot is above the minimum voltage specified in the product
datasheet or if Power Control is above 11V.

Additionally, the output stage will be turned off when the main battery voltage on VMot
drops below a user configurable level that is factory preset at 5V. The fault clears as long
as the voltage goes above the undervoltage Limit, when Automatic Fault Clearance is en-
abled (see FLCL - Automatic Fault Clearance).

Temperature-Based Protection
The controller features active protection which automatically reduces power, based on
measured operating temperature. This capability ensures that the controller will be able to
work safely with practically all motor types and will adjust itself automatically for the vari-
ous load conditions.

There are 3 types of temperatures:

•	 MCU temperature
•	 Heatsink Temperature which is sensed inside the product, close to the MOSFETs.
•	 Motor temperature which is measured via analog inputs.

When the measured temperature reaches 5
o
C below the Over temperature limit, the con-

troller’s maximum allowed power output begins to drop by 20% for every degree until the
temperature reaches the Over temperature limit. Above this limit, the controller’s power
stage turns itself off completely. For the MCU temperature the overtemperature limit is
hardcoded at 95oC.

Global Power Configuration Parameters

	 Advanced Digital Motor Controller User Manual� 91

Note that the measured temperature is measured on the heat sink near the Power Transis-
tors and will rise and fall faster than the outside surface.

The time it takes for the heat sink’s temperature to rise depends on the current output,
ambient temperature, and available air flow (natural or forced). The fault clears as long as
the temperature goes below the limit, when Automatic Fault Clearance is enabled (see
FLCL - Automatic Fault Clearance).

Current Limiting
The controller does not allow the motor current to go beyond the configuration value
ALIM (see ALIM - Amps Limit). So even if the command requirements are higher the
controller goes into current control and limits the power applied to the motor in order to
keep the current inside the configured limits.

I2T Protection
I2T protection is a more indirect but more responsive method for protecting motors main-
ly from overheating. The concept is based on one number which is the I2T accumulator
and is calculated by the following formula:

I2T_accumulator += (Inow
2 – INom

2) * time.

where

•	 Inow is the current that is measured for specific time.
•	 INom is the nominal current of the motor. This is the current under which the motor

can run continuously. This value is set using the configuration command NOMA
(NOMA - Nominal Current).

So when motor draws more current than the nominal then I2T accumulator increases.
When motor draws less current than the nominal, the I2T accumulator decreases. I2T
accumulator is compared with a maximum value called I2T limit and is calculated by the
following formula.

I2T_limit = (IPeak2 – INom2) * peak_time.

where

•	 IPeak is the maximum current the motor can handle for specific time. This value is
set using the configuration command ALIM (see ALIM - Amps Limit).

•	 peak_time is the maximum time that the motor can handle current similar to IP-
eak. This value is set using the configuration command TPAL (see TPAL - Time for
Amps Limit).

If I2T accumulator becomes bigger than I2T limit then the controller will stop limiting the
current at ALIM and start limiting the current at 80% of the nominal current (NOMA). In
that way the motor will cool down and I2T accumulator will respectively decrease. This
limitation will remain until I2T accumulator goes below the 10% of I2T limit.

Respectively the I2T limit of the controller is calculated based on their specifications as
stated in the datasheet. In order to protect the controller we compare the two I2T limits
(the controller’s hardcoded one and the motor’s configured one) and will implement the
feature using the smaller value of the two limits.

Motor Operating Features and Options

92	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Important Note

If TPAL value is set to 0 then I2T protection is deactivated.

Short Circuit Protection
The controller has two levels of short circuit protection, software and hardware protection.

The firmware utilizes the current sensors in order to detect short circuit. How the
firmware will behave depends on the THLD - Short Circuit Detection Sensitivity.

•	 If set as High Sensitivity (0, default), then it works as an over-current threshold
detector. The current threshold is defined at each product’s datasheet. So if current
goes above that threshold the short fault is triggered.

•	 If set as Medium Sensitivity (1) then when the current goes beyond the current
threshold, the controller deactivates the MOSFETs for 5ms and then recovers. If
that happens more than 3 times in a 128ms period then short fault is triggered.

•	 If set as Low Sensitivity (2) then when the current goes beyond the current
threshold, the controller deactivates the MOSFETs for 5ms and then recovers. If
that happens more than 7 times in a 128ms period then short fault is triggered.

The short fault will remain until the next idle motor command is given (0 in case of speed
modes, equal to feedback in case of position modes).

The following shorts can be detected (not in all boards, please refer to the specific data-
sheet for the “Short Circuit Detection threshold”):

•	 Between 2 motor output phases of the same channel
•	 Between motor output phase and VMOT
•	 Between motor output phase and PWR_GND

It needs also to be noted that the software short circuit protection can also be triggered
due to high current ripple conditions, which are mostly due to low motor inductance val-
ues. Please refer to the datasheet for the minimum inductance value.

Closed Loop Error Protection
The controller will detect large tracking errors due to mechanical or sensor failures and
stop the motor. The detection mechanism looks for the size of the tracking error and the
duration the error is present. Three predefined levels of sensitivity are provided in the con-
troller configuration along with a custom option:

0: Disabled

1: 250ms and Error > 100 units

2: 500ms and Error > 250 units.

3: 1000ms and Error > 500 units.

4: Custom

Where Error represent:

•	 Ramped Command – Feedback in RPM in Closed Loop Speed mode,
•	 Ramped Command – Feedback in Amps*10 in Closed Loop Torque mode,

Global Power Configuration Parameters

	 Advanced Digital Motor Controller User Manual� 93

•	 Track – Feedback in Counts in Closed Loop Speed Position mode and Closed Loop
Count Position mode,

•	 Track – Feedback in Fraction of position counts (-1000 – 1000) in Closed Loop Posi-
tion Relative mode and Closed Loop Tracking Position mode.

When an error is triggered, the motor channel is stopped by controlling speed using Fault
Deceleration. The motor remains stopped until being cleared by issuing an idle motor
command (0 for speed modes or equal to feedback for position modes).

Clearing the loop error make the motor available for moving again. However, this does not
mean that the loop error will not happen again. Configuration tuning is necessary in order
to prevent from having Loop Error again. The loop error value can be monitored in real
time using the Roborun PC utility.

If Custom option is configured then the loop error will work based on the values in the
fields Loop Error Limit and Loop Error Time (see configuration commands FEW - Loop
Error Limit and FET - Loop Error Time for more details).

These values can also be modified during runtime using the respective runtime
commands FEW and FET, or via the respective SDOs in DS402 mode (applicable only for
position modes).

Important Note

The predefined levels might not be applicable in Closed Loop Count Position, espe-
cially in case the sensor, used as feedback, has high resolution. In cases like that the
loop error detection can be disabled and a custom method can be implemented via
scripting or use the FET and FEW runtime commands via DS402 mode.

Similarly for Closed Speed Position mode, since the command is speed and the
feedback is position, it is recommended to have loop error detection level to dis-
abled.

Mixed Mode Select
Mixed mode is available as a configuration option in dual channel controllers to create
tank-like steering when one motor is used on each side of the robot: Channel 1 is used for
moving the robot in the forward or reverse direction. Channel 2 is used for steering and
will change the balance of power on each side to cause the robot to turn. Figure 7-2 below
illustrates how the mixed mode motor arrangement.

Controller

 FIGURE 7-2. Effect of commands to motor examples in mixed mode

The controller supports 3 mixing algorithms with different driving characteristics. The table
below shows how each motor output responds to the two commands in each of these
modes.

Motor Operating Features and Options

94	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TABLE 7-1. Mixing Mode characteristics

Input Mode 1 Mode 2 Mode 3

Throttle Steering M1 M2 M1 M2 M1 M2

0 0 0 0 0 0 0 0

0 300 300 -300 300 -300 300 -300

0 600 600 -600 600 -600 600 -600

0 1000 1000 -1000 1000 -1000 1000 -1000

0 -300 -300 300 -300 300 -300 300

0 -600 -600 600 -300 300 -600 600

0 -1000 -1000 1000 -1000 1000 -1000 1000

300 300 600 0 600 0 522 90

300 600 900 -300 900 -300 762 -120

300 1000 1000 -700 1000 -1000 1000 -400

300 -300 0 600 0 600 90 522

300 -600 -300 900 -300 900 -120 762

300 -1000 -700 1000 -1000 1000 -400 1000

600 300 900 300 900 300 708 480

600 600 1000 0 1000 -200 888 360

600 1000 1000 -400 1000 -1000 1000 200

600 -300 300 900 300 900 480 708

600 -600 0 1000 -200 1000 360 888

600 -1000 -400 1000 -1000 1000 200 1000

1000 300 1000 700 1000 400 900 1000

1000 600 1000 400 1000 -200 1000 1000

1000 1000 1000 0 1000 -1000 1000 1000

1000 -300 700 1000 400 1000 1000 900

1000 -600 400 1000 -200 1000 1000 1000

1000 -1000 0 1000 -1000 1000 1000 1000

Motor Channel Parameters

User Selected Current Limit Settings
The controller has current sensors at each of its output stages. This current is measured
and a correction to the current control is applied if higher than the user preset value.

The current limit may be set using the supplied PC utility. The maximum limit is dependent
on the controller model and can be found on the product datasheet.

The limitation is performed on the Motor current and not on the Battery current. See “Bat-
tery Current vs. Motor Current” on page 28 for a discussion of the differences.

Motor Channel Parameters

	 Advanced Digital Motor Controller User Manual� 95

Selectable Amps Threshold Triggering
The controller can be configured to detect when the Amp on a motor channel exceeds a
user-defined threshold value and trigger an action if this condition persists for more than a
preset amount of time.

The list of actions that may be triggered is shown in the table below.

TABLE 7-2. Possible Action List when Amps threshold is exceeded

Action
Applicable
Channel Description

No Action - Input causes no action

Quick Stop Selectable Stops the respective motor by controlling speed using
Fault Deceleration. The motor remains in Quick Stop
until an idle motor command is given (0 in case of speed
modes, equal to feedback in case of position modes).

Emergency stop All Sets all the MOSFETs that drive the respective motor to
float. So no power is applied to the motor and the motor is
about to stop due to friction.

This feature is very different from amps limiting. Typical uses for it are for stall detection
or “soft limit switches”. When, for example, a motor reaches an end and enters stall con-
dition, the current will rise, and that current increase can be detected and the motor be
made to stop until the direction is reversed.

Programmable Acceleration & Deceleration
When changing speed command, the controller will go from the present speed to the de-
sired one at a user selectable acceleration. This feature is necessary in order to minimize
the surge current and mechanical stress during abrupt speed changes.

This parameter can be changed by using the PC utility. Acceleration can be different for each
motor. A different value can also be set for the acceleration and for the deceleration. The ac-
celeration value is entered in RPMs per second. In open loop installation, where speed is not
actually measured, the acceleration value is relative to the Max RPM parameter. For example,
if the Max RPM is set to 1000 (default value) and acceleration to 2000, this means that the
controller will go from 0 to 100% power in 0.5 seconds. In closed loop Torque Mode the Ac-
celeration and Deceleration values are entered in miliAmps per second. In case of Quick Stop
the motor will ramp down based on the Fault Deceleration configuration value.

In order to by-pass the ramping process, either the acceleration or the deceleration values
need to be set to 0.

Important Warning

Depending on the load’s weight and inertia, a quick or no acceleration can cause
considerable current surges from the batteries into the motor. A quick or no
deceleration will cause an equally large, or possibly larger, regeneration current
surge. Always experiment with the lowest acceleration value first and settle for the
slowest acceptable value.

Furthermore, by by-passing command ramp the controller cannot protect itself from
high currents.

Motor Operating Features and Options

96	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Forward and Reverse Power Adjustment Gain
This parameter lets you select the scaling factor for the power output as a percentage
value. This feature is used to connect motors with a voltage rating that is less than the
battery voltage. For example, using a factor of 50% it is possible to connect a 12V motor
onto a 24V system, in which case the motor will never see more than 12V at its input
even when the maximum power is applied.

Note: With this feature the voltage applied is not stepped down. The limit is applied in the
duty cycle. So as in the above mentioned example, the duty cycle will be limited to 50%
with 24V, thus giving in the end 12V.

Speed feedback filter
For stable and smooth controller closed loop speed operation, a first order Infinite Im-
pulse Response (IIR) low pass filter has been implemented in order to effectively filter the
speed oscillations provoked from sensor noise, non-linearity, or mechanical system reso-
nances, adding very small phase delay to the output filtered signal. The user can configure
the low pass filter bandwidth by setting the following parameters in the configuration tab:

or by sending the following configuration commands from Console:

^LPFB ch nn,

where ch: motor channel, nn: low pass filter bandwidth (Hz)

The available bandwidth range is from 1 Hz to 150 Hz. Therefore, the user could select
the most appropriate bandwidth value for the application, compensating between speed
filtering and phase delay. Default value has been selected equal to 45 Hz. Below are the
respective bode diagrams of the implemented IIR filter for bandwidth values equal to 20,
45 and 80 Hz, illustrating the filtering capability and filtering capability.

It is also recommended for stability issues the speed filter bandwidth to be quite higher
than the speed PI control loop bandwidth. This low pass filter is applicable for encoder,
SSI, sin/cos and resolver angle sensors, when used as speed feedback.

Speed feedback filter

	 Advanced Digital Motor Controller User Manual� 97

(a)

(b)

Motor Operating Features and Options

98	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

(c)

FIGURE 7-3. Frequency response of speed feedback low pass filter for (a) 20 Hz (b) 45 Hz and (c) 80 Hz
bandwidth rate.

Selecting the Motor Control Modes
For each motor, the controller supports multiple motion control modes. The controller’s
factory default mode is Open Loop Speed control for each motor. The mode can be
changed using the Roborun PC utility.

Open Loop Speed Control
In this mode, the voltage supplied to the motor is directly proportional to the command
given to the motor. The actual motor speed is not controlled, which means that the motor
speed will vary with load changes. This mode should only be used for the initial configura-
tion and testing of the motor, and it should not be employed in the final implementation.
The reason is that the motor’s current is not controlled, and it can increase rapidly in re-
sponse to significant variations in motor voltage or back electromotive force.

FIGURE 7-4. Open loop mode

Selecting the Motor Control Modes

	 Advanced Digital Motor Controller User Manual� 99

Important Note

Open Loop should only be used for the initial configuration and testing of the mo-
tor, and it should not be employed in the final implementation.

Closed Loop Speed Control
In this mode, illustrated in Figure 7-5, an optical encoder (typical) or an analog tachometer
is used to measure the actual motor speed. If the speed changes because of changes in
load, the controller automatically compensates the power output. This mode is preferred
in precision motor control and autonomous robotic applications. Details on how to wire
the tachometer can be found in “Connecting Tachometer to Analog Inputs” on page
52. Closed Loop Speed control operation is described in “Closed Loop Speed Mode” in
Section 10. On brushless motors, speed may be sensed directly from the motor’s Hall or
other internal Sensors and closed loop operation is possible without additional hardware.

Position Sensor

Gear box

Position Feedback

FIGURE 7-5. Motor with tachometer or Encoder for Closed Loop Speed operation

FIGURE 7-6. Closed loop Speed mode

Closed Loop Speed Position Control
In this mode, the controller computes the position at which the motor must be at every
1ms. Then a position loop compares that expected position with the current position and
applies the necessary power level in order for the motor to reach that position. This mode
is especially effective for accurate control at very slow speeds. Details on this mode can
be found in “Closed Loop Speed and Speed-Position Modes”w in Section 10.

FIGURE 7-7. Closed Loop Speed Position mode

Motor Operating Features and Options

100	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Closed Loop Position Relative Control
In this mode, illustrated in Figure 7-8, the axle of a geared down motor is typically cou-
pled to a position sensor that is used to compare the angular position of the axle versus a
desired position. The motor will move following a controlled acceleration up to a user de-
fined velocity and decelerate to smoothly reach the desired destination. This feature of the
controller makes it possible to build ultra-high torque “jumbo servos” that can be used to
drive steering columns, robotic arms, life-size models and other heavy loads. Details on
how to wire the position sensing potentiometers and operating in this mode can be found
in “Closed Loop Relative and Tracking Position Modes” in Section 11.

Position Sensor

Gear box

Position Feedback

FIGURE 7-8. Motor with potentiometer assembly for position operation

FIGURE 7-9. Closed Loop Position Relative mode

Closed Loop Count Position
In this mode, an encoder is attached to the motor as for the Speed Mode of Figure
7-9. Then, the controller can be instructed to move the motor to a specific number of
counts, using a user-defined acceleration, velocity, and deceleration profile. Details
on how to configure and use this mode can be found in “Closed Loop Count Position
Mode” in Section 12. On brushless motors, the hall sensors can be also be used for po-
sition measurement.

FIGURE 7-10. Closed Loop Count Position mode

Closed Loop Position Tracking
This mode uses the same feedback sensor mount as this of Figure 7-10. In this mode, the
motor will be moved until the final position measured by the feedback sensor matches

Motion Control Modes Overview

	 Advanced Digital Motor Controller User Manual� 101

the command. The motor will move as fast as it possibly can, using maximum physical
acceleration. This mode is best for systems where the motor can be expected to move as
fast as the command changes. Details on this operating mode can be found in “Closed
Loop Relative and Tracking Position Modes” in Section 11.

FIGURE 7-11. Closed Loop Position Tracking mode

Torque Mode
In this closed loop mode, the motor is driven in a manner that it produces a desired
amount of torque regardless of speed. This is achieved by using the motor current as of
the feedback. Torque mode does not require any specific wiring. The detail on this operat-
ing mode can be found in “Closed Loop Torque Mode” in Section 13.

FIGURE 7-12. Closed Loop Torque mode

Motion Control Modes Overview

In the figure 7-13, the block diagram of the whole motion control modes architecture
supported in RoboteQ controllers. The motion control mechanism utilizes a cascaded PID
control technique for position, speed and current control modes. More details for each
control mode operation and tuning are included in separate chapters at sections 10-13,
respectively.

Note: The dashed lines at the output of position and speed controllers illustrate the alter-
native operating scheme of each mode in case the speed or FOC torque gains respective-
ly are equal to zero.

Motor Operating Features and Options

102	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

FIGURE 7-13. Close loop operating modes diagram

Below is the description of the parameters illustrated in Figure 7-13.

P* = position reference command value, in counts at count position and speed position
modes and in -1000/1000 command at tracking position and position relative modes

P = measured position from motor sensor, in counts at count position and speed position
modes and in -1000/1000 command at tracking position and position relative modes

Pn = position reference command value every msec, calculated from trajectory function
according to configured acceleration, deceleration and speed

S* = speed reference command value in rpm

S = measured motor mechanical speed in rpm

Is* = reference current command value in Ampere

Iq* = q-axis reference current command value in Ampere (Torque Amps command)

Feedforward terms

	 Advanced Digital Motor Controller User Manual� 103

Id* = d-axis reference current command value in Ampere (Flux Amps command)

Iq* = q-axis current measurement in Ampere (Torque Amps)

Id* = d-axis current measurement in Ampere (Flux Amps)

Vq* = q-axis reference voltage command Volts

Vd* = d-axis reference voltage command in Volts

Vabc* = reference instantaneous applied 3-phase voltage command at mosfet bridge in Volts

Ia = measured motor phase A instantaneous current

Ib = measured motor phase B instantaneous current

 θe = measured motor electric angle

Feedforward terms
Feedforward control is a powerful method to increase the performance of the speed and
position loops. In particular, there are two types of feedforward control working in parallel
with the PID regulators, the acceleration feedforward control applied at speed loop and
velocity feedforward control applied at position loop.

Acceleration feedforward control
The acceleration feedforward control is applied by extension in the Closed loop Speed
mode and in cascaded position control modes, that use it. The purpose of the acceleration
feedforward terms is to increase the responsiveness of the speed loop during transition
states (acceleration, deceleration), working in parallel with the existing PI controller. The
function is applicable to BL products. An overview of the function is illustrated in below
figure.

Motor Operating Features and Options

104	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Acceleration
Feedforward part

FIGURE 7-14. Block diagram of speed control with acceleration feedforward.

Below the description of the parameters illustrated in above figure.

Gain B: mechanical system rotating friction coefficient term

Gain J: mechanical system inertia term

It is evident that the respective feedforward parameters for speed control loop are
mainly affected by mechanical system characteristics. In order to enable the acceleration
feedforward control, the following parameters in the configuration needed to be set:

or by sending the following configuration commands from Console:

^JR ch nn,

where ch: motor channel, nn: mechanical system inertia (kg*m2) * 10000000

^BR ch nn

where ch: motor channel, nn: mechanical system rotating friction coefficient (Nm/(rad/s)) *
10000000

Feedforward terms

	 Advanced Digital Motor Controller User Manual� 105

These parameters could be automatically calculated from the Motor Sensor and Tuning
setup wizard, supported in Roborun+ v3.0 utility (see Roborun+ Utility User Manual for
more details). By setting both the above parameters with values higher than 0, the accel-
eration feedforward control is automatically enabled for speed control and position con-
trol modes when speed gains are used. Disabling can be done by zeroing the mechanical
system inertia or friction coefficient. Default values for mechanical system inertia/friction
are zero, meaning the acceleration feedforward algorithm is by default OFF.

Example

Below is a representative speed response test implemented. The PI parameters were got
from the motor sensor and tuning setup wizard.

J : 9.44 * 10-5 kg · m2

B : 2.55 * 10-4 Nm/(sec
rad)

Control mode: Closed loop speed

Speed loop bandwidth selected: 10Hz

Speed command applied: 0-1500RPM

Acceleration Ramp: 14000 RPM/sec

Current control bandwidth: 800 Hz

Current control Decoupling terms: Enabled

0

200

400

600

800

1000

1200

1400

1600

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

CMD

FBK

FBK_CFF

FIGURE 7-15. Speed response test result.

From the above results the much quicker speed response can be observed with the accel-
eration feedforward terms enabled during the acceleration transient stage.

Velocity feedforward control
The velocity feedforward control is applied in all Closed loop Position modes. The purpose
of velocity feedforward term is to enhance the responsiveness of the position loop during
transition states (acceleration, deceleration), working in parallel with the existing PI con-
troller. The function is applicable to BL products. An overview of the function for count po-
sition mode is illustrated in below figure, where the Velocity Gain is the feedforward gain
set by the user. A similar feedforward implementation exists in other position modes.

Motor Operating Features and Options

106	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Velocity
Feedforward part

FIGURE 7-16. Block diagram of count position control with velocity feedforward control.

In order to enable the velocity feedforward control, velocity feedforward parameter in the
configuration needs to be set:

The parameter can be also set by sending the following configuration commands from
Console:

^VELFF ch nn,

where ch: motor channel, nn: feedforward gain value *1000

By setting the above parameter with value higher than 0, the velocity feedforward control
is automatically enabled for position control modes. Disabling can be done by zeroing
the velocity feedforward gain value. The default value for the velocity feedforward gain
is zero, meaning that the velocity feedforward algorithm is by default OFF. The typical
velocity feedforward gain value is 1.0. For values higher than 1.0, the position loop is more
aggressive, while for values lower than 1.0 the position loop is more tolerant in system
disturbances but less responsive.

Example

Below is a representative position response test. The parameters of the test are the
following:

Control mode: Closed loop Count position

Feedforward gain: 1.0

Acceleration feedforward control: Enabled

Decoupling current control: Enabled

Current loop: 800 Hz

Speed loop bandwidth: 10 Hz

DS402 Homing Function

	 Advanced Digital Motor Controller User Manual� 107

Position loop bandwidth: 1 Hz

Position command applied: 1 revolution (16384 counts)

Acceleration Ramp: 14000 RPM/sec

Deceleration Ramp: 14000 RPM/sec

Encoder counts per revolution: 16384

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 50 99 14
8

19
7

24
6

29
5

34
4

39
3

44
2

49
1

54
0

58
9

63
8

68
7

73
6

78
5

83
4

88
3

93
2

98
1

10
30

10
79

11
28

11
77

12
26

12
75

13
24

CMD

FBK

FBKCFF

FIGURE 7-17. Position response test result.

From the above results the much quicker position response can be observed with the
velocity feedforward terms enabled. It is noted that the effectiveness of the respective
feedforward terms is evident during acceleration/deceleration stage.

DS402 Homing Function
Roboteq drives support homing using a homing sensor in accordance with the DS402
standard. The homing methods supported are 17-30 and 35, as defined in the standard.
The homing switch can be configured on any supported digital input by setting the input
action to ‘Load home counter.’ Consequently, the ‘Home count’ parameter will be loaded
with the sensor counter value. The default value for this parameter is zero. Configuring the
homing switch can be done through serial configuration commands, Roborun+ utility and
CANOpen. It should be noted that the digital inputs scan the sensor at 1 ms intervals and
do not operate on an interrupt basis.

Table 7.3 lists the relevant serial commands and corresponding CANopen objects for con-
figuring the homing sensor. For more detailed information, please refer to the serial com-
mands reference section and Roboteq’s CAN Networking manual.

Motor Operating Features and Options

108	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TABLE 7-3. Homing Command References

Command CANopen ID Description

HMD 0X6098 Homing Method

HSP 0X6099 Homing Speed

DINA 0x301A Digital Input Action

DINL 0x3010 Digital Input Active Level

BHOME 0x303C Brushless Internal Sensor Home Count

EHOME 0x304F Encoder Home Count

SHOME 0x30DB Sensor Home Count

Introduction to Brushless Motors

	 Advanced Digital Motor Controller User Manual� 109

SECTION 8	 Brushless Motor
Connections
and Operation

This section addresses installation and operating issues specific to brushless motors. It is
applicable only to brushless motor controller models.

Important Warning

This Manual refers to Firmware 3.x of Roboteq Motor Controllers. Many of the de-
scribed features are either not available or do not work the same way (PID gains in
particular) than in Firmware 2.x or prior. Refer to Manual v2.1a for earlier Firmware.

Introduction to Brushless Motors
Brushless motors, or more accurately Brushless DC Permanent Magnet Synchronous mo-
tors (since there are other types of motors without brushes) contain permanent magnets
and electromagnets. The electromagnets are arranged in groups of three and are powered
in sequence in order to create a rotating field that drives the permanent magnets. The
electromagnets are located on the non-rotating part of the motor, which is normally in the
motor casing for traditional motors, in which case the permanent magnets are on the ro-
tor that is around the motor shaft. On hub motors, such as those found on electric bikes,
scooters and some other electric vehicles, the electromagnets are on the fixed center part
of the motor and the permanent magnets on the rotating outer part.

Brushless Motor Connections and Operation

110	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

N

S

U

V W

FIGURE 8-1. Permanent Magnet Synchronous Motor construction

As the name implies, Brushless motors differ from traditional DC motors in that they do
not use brushes for commutating the electromagnets. Instead, it is up to the motor con-
troller to apply, in sequence, current to each of the 3 motor windings in order to cause the
rotor to spin. There are fundamentally two methods of generating the rotating magnetic
field in the motor’s winding:

•	 Trapezoidal Commutation
•	 Sinusoidal Commutation

Within each commutation method is then a method for detecting the actual position of
the rotor in order to synchronize the generated rotating field. These are:

•	 Hall sensors
•	 Encoders (Absolute or relative)

All Roboteq brushless controllers support Trapezoidal with Hall sensor feedback and
sinusoidal with various sensors for angle estimation and feedback.

Number of Poles
One of the key characteristics of a brushless motor is the number of poles of permanent
magnets pairs it contains. A full 3-phase cycling of motor’s electromagnets will cause the
rotor to move to the next permanent magnet pole. A full 3-phase cycle is known as electri-
cal turn which will be different from the physical (mechanical) turn of the shaft if the motor
number of pole pairs is greater than one: increasing the number of pole pairs will cause
the motor to rotate more slowly for a given rate of change on the winding’s phases.

Roboteq controllers use the number of motor pole pairs to measure the number of turns
a motor has made as well as motor speed.

Determining the Number of Poles

The number of pole pairs on a particular motor is usually found in the motor’s specifica-
tion sheet. The number of pole pairs can also be measured by applying a low DC current
(around 1A) between any two of the three motor phase wires and then counting the
number of cogs you feel when rotating the motor by hand for a full turn. It can also be de-
termined by rotating the motor shaft by hand a full turn. Then take the number of counts
reported by the hall counter in the Roborun PC utility, and divide it by 6.

		 #Pole Pairs = Hall Counts per turn / 6

Trapezoidal Switching

	 Advanced Digital Motor Controller User Manual� 111

The number must be entered using the Number of Pole Pairs menus in the in the Roborun
PC utility.

FIGURE 8-2. Number of pole pairs configuration

Or by sending the configuration command:

^BPOL channel nn

See “BPOL” in the command reference section for details. This parameter is not need-
ed for basic trapezoidal motor operation with Hall Sensor feedback and can be left at its
default value. It is needed if accurate speed reporting is required or to operate in Closed
Loop Speed or Position modes . The number of pole pairs is a critical configuration in sinu-
soidal mode.

Entering a negative number of pole pairs will reverse the measured speed and the count
direction. It is useful when operating the motor in closed loop speed mode and if other-
wise a negative speed is measured when the motor is moved in the positive direction.

Trapezoidal Switching
In trapezoidal switching, the controller applies current to two of the 3 motor wires, in turn
and in alternating direction. A total of 6 combinations of current flow are possible, result-
ing in the rotor getting a changing magnetic field every 60 degrees of electrical rotation.
The controller must therefore know where the rotor is in relation to the electromagnets so
that current can be applied to the correct winding at any given point in time. The simplest
and most reliable method is to use three Hall sensors inside the motor. The diagram be-
low shows the direction of the current in each of the motor’s windings depending on the
state of the 3 hall sensors.

U

VW

1 2 3 4 5 6 1

1

2

2

3

3

4

4

5

5

6

6

Hall A

Hall B

Hall C

U

V

W

-

+ +

+ + + +

+ + + +

+ +

- - - -

- - - -

- - -

FIGURE 8-3. Hall sensors sequence

Brushless Motor Connections and Operation

112	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Hall Sensor Wiring
Hall sensors connection requires 5 wires on the motor:

•	 Ground

•	 Sensor A Output

•	 Sensor B Output

•	 Sensor C Output

•	 +5V power supply

Sensor outputs are generally Open Collector, meaning that they require a pull up resistor
in order to create the logic level 1. Pull up resistor of 4.7K ohm to +5V are incorporated
inside all controllers. Additionally, 1nF capacitors to ground are present at the controller’s
input in order to remove high frequency spikes which may be induced by the switching at
the motor wires.

Input
Buffer

+5V Out

GND

4.7K

10nF

HA, HB, HC

FIGURE 8-4. Hall sensor inputs equivalent circuit

Both 120 degrees and 60 degrees Hall sensors spacing, are supported (see “HPO” in the
command reference section). Hall sensors can typically be powered over a wide voltage
range. The controller supplies 5V for powering the Hall sensors.

Important Notice

120 degrees Hall sensor spacing is by far the most common. Use 60 degrees only if
that is specified in the motor’s documentation or label.

Unless specified otherwise in the datasheet, Hall sensor connection to the controller is
done using Molex Microfit 3.0 connectors. These high quality connectors provide a reliable
connection and include a lock tab for secure operation. The connector pin-out is shown in
the controller model’s datasheet.

In several controller models, the Hall inputs can be alternatively mapped to digital inputs
on the I/O connector. This makes it possible to use the hall sensors for rotor commutation,
and SSI sensors for other purposes at the same time (see “MLX” in the command ref-

Trapezoidal Switching

	 Advanced Digital Motor Controller User Manual� 113

erence section). Note that in the case where digital inputs are configured as Hall inputs,
pull-up resistor from the input pin to the +5V must be added externally. Use 4.7K resistors
wired as shown in Figure 8.4.

Important Warning

Keep the Hall sensor wires away from the motor wires. High power PWM switching
on the motor leads will induce spikes on the Hall sensor wires if located too close.
On hub motors where the Hall sensor wires are inside the same cable as the motor
power wires, separate the two sets of wires the nearest from the motor as possible.

Important Notice

Make sure that the motor sensors have a digital output with the signal either at 0
or at 1. Sensors that output are gradually changing are typically analog signals will
cause the motor to run imperfectly.

Hall Sensor Verification
Hall Sensor miswiring is a very common cause when the motor is not running. You can
send the following query to verify that the hall sensors are seen by the controller:

?HS [channel]

The reply is one or two numbers, depending on the number of channels, of values be-
tween 0 and 7 with each bit representing the state of each of the HA, HB and HC sen-
sors.

Turn the motor slowly by hand while sending frequent ?HS queries. Verify that all valid
combinations appear at one time or the other and that none of the invalid combination
ever show.

For 120 degrees spaced sensors, 1-2-3-4-5-6 are valid combinations, while 0 and 7 are
invalid combinations. For 60 degrees spaced Hall sensors, 0-1-3-4-6-7 are valid combina-
tions, while 2 and 5 are invalid combinations.

Note that HS query does not work on the first generation HBL and VBL family of products.

Hall Sensor Wiring Order

The order of the Hall sensors and these of the motor connections must match in order for
the motor to spin. Unfortunately, there is no standard naming and ordering convention for
brushless motors.

The Hall Sensor and Motor Phases naming convention used in Roboteq controllers is A,
B and C for the sensors and U, V and W for the motor phases. When rotating the motor
shaft clockwise by hand, the controller expects the sensor A to be a mirror of the voltage
generated between wires U and W, sensor B between V and U, sensor C between W and

Brushless Motor Connections and Operation

114	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

V. See figure 8-5. The sine wave voltage will be inverted when turning the motor in the
opposite direction.

Vv-u Vw-vVu-w

Va Vb Vc

FIGURE 8-5. Relation between hall sensor and U V W windings

Determining the Wiring Order Empirically
While probing with an oscilloscope gives the definite order, a simpler and quicker way is
to find the correct combination by trial and error. To do this, you can either connect the
motor wires permanently and then try different combination of Hall sensor wiring, or you
can connect the Hall sensors permanently and try different combinations of motor wiring.
There is a total of 6 possible combinations of wiring three sensors on three controller
inputs. There are also 6 possible combinations of wiring three motor wires on three con-
troller outputs. Only one of the 6 combinations will work correctly and smoothly while
allowing the controller to drive the motor in both directions.

Alternatively, instead of swapping Hall sensors or motor phases, you can use the “Hall
Sensor Map” configuration from the PC Utility menu (see “HSM” in the command refer-
ence section)., or from the following console command:

^HSM ch nn

Try each of the 6 available values of HSM (0-5) and retain the one that will make the motor
spin in both directions while drawing the same low current.

When testing a combination, apply a low amount of power (5 to 10%). Applying too high
power may trigger the stall protection. Once a combination that make the motor spin is
found, increase the power level and verify that rotation is smooth, at very slow speed and
at high speed and in both directions.

Important Notice

Beware that while only one combination is valid, there may be other combinations
that will cause the motor to spin. When the motor spins with the wrong wiring
combination, it will do so very inefficiently. Make sure that the motor spins equally
smoothly in both directions. Try all 6 combinations and select the best.

Trapezoidal Switching

	 Advanced Digital Motor Controller User Manual� 115

Important Notice

It is not possible to change the motor direction by changing the Hall/Phase order. If
the motor is not turning in the desired direction, chose “Inverted” in the “Motor Di-
rection” configuration menu in the PC Utility.

Hall Sensor Alignment
It is very important that the hall sensors be precisely aligned vs the electromagnets in-
side the motor so that commutation be done exactly at the right time. Bad alignment will
cause the motor to run inefficiently.

A first, and generally reliable clue that Hall Sensors are not properly aligned is to run the
motor in the forward and then reverse direction while in Open Loop. Verify that for a given
command level in open loop, the motor reaches the identical speed and consumes the
same amount of current.

Another simple verification method is to use an oscilloscope to view the shape of the
phase voltage. While the motor is running, place a probe between ground and any of the
motor phases. Verify that the voltage looks like the shape on the figure 8-6. Look for sym-
metrical ramps on the left and right. An imbalance in the ramps indicates that the commu-
tation happens at the wrong time because of bad Hall Sensor position.

T TT/2 T/2T/2 T/2T

Correctly Timed Commutation

Wrong Timing Commutation

FIGURE 8-6. Ground to Phase voltage waveform on motor with correct and wrong commutations

The most precise evaluation of the Hall Sensors alignment is done using an oscilloscope
and the circuit described in figure 8.7. Compare the shape of the Hall Sensor signal to this
of the voltage that is generated on the motor phases as the shaft is rotated by an external
force. Verify that the zero-crossing of the phase voltages is occurring at exactly the same
time as the Hall Sensor transitions, as shown in figure 8-5.

Brushless Motor Connections and Operation

116	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Motor
U
V
W

Vw-u

Probe

Probe

Rotate
shaft
clockwise GND Clip

GND Clip

Hall Sensor Power and Pull-ups

HA

Va

+5V

2-10k

2-10k

2-10k

HB

HC

GND

5V

FIGURE 8-7. Use an oscilloscope and the circuit in figure to place the probes and generate these signals

Important Warning

Hall Sensor misalignment cannot be corrected by the controller. Contact the motor
manufacturer for remedy.

Sinusoidal Commutation
In sinusoidal commutation, all three wires are permanently energized with a sinusoidal
current that is 120 degrees apart on each phase as shown in figure 8-8.

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

31
1

32
1

33
1

34
1

35
1

36
1

37
1

38
1

39
1

40
1

41
1

42
1

43
1

44
1

45
1

46
1

47
1

48
1

49
1

50
1

51
1

52
1

53
1

54
1

55
1

56
1

57
1

58
1

59
1

60
1

61
1

62
1

63
1

64
1

65
1

66
1

67
1

68
1

69
1

70
1

71
1

V

U

W

FIGURE 8-8. Three phase current creating a rotating magnetic field

At its most basic operation, the controller measures the rotor’s angular position, adds or
subtracts 90o depending on the desired rotation direction, and applies the result to the
3-phase PWM generator.

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 117

Rotor Angle
Sensor

Direction

Amplitude

3-Phases PWM Generator

+/-90o

U

V

W

FIGURE 8-9. Simplified 3-phase sinusoidal model

As the motor turns, the phase on each wire is changed in order for the magnetic field to
always be perpendicular, and therefore create the maximum radial force to the rotor.

90o

90o

FIGURE 8-10. Magnetic field perpendicular to rotor magnets

The principle benefit of sinusoidal commutation is the quiet, rumble-free, motor operation
resulting from the smoothly rotating and always aligned magnetic field.

However, sinusoidal commutation is more complex to configure, calibrate, tune and oper-
ate. For best and fastest results it is recommended that you follow these step rigorously:

1- Configure the Controller for Sinusoidal Commutation

2- Select and Configure a Supported Angle Sensors

4- Prepare for Automatic Sensor Setup

5- Run the Automatic Sensor Setup

6- Set, Test and Troubleshoot FOC-Field Oriented Control

Brushless Motor Connections and Operation

118	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Configuring the Controller for Sinusoidal Commutation
Sinusoidal mode is selected via the Switching Mode configuration menu in the Roborun
PC utility.

FIGURE 8-11. Sinusoidal configuration

Or by sending the configuration command:

^BMOD channel 1

Configuring the Number of Motor Pole Pairs

The number of Motor Pole Pairs is a critical parameter for sinusoidal combination. A full
3-phase cycling of motor’s electromagnets will cause the rotor to move to the next per-
manent magnet pole. A full 3-phase cycle is known as electrical turn which will be differ-
ent from the physical (mechanical) turn of the shaft if the motor number of pole pairs is
greater than one. The figure below show the relationship between mechanical degree and
electrical degree in the case of a two pole pairs motor.

0

0

0
22.5

45

45

45

67.5

90

90

90 112.5

135

135

135

157.5180

180180

202.5

225

225

225

247.5

270

270

270292.5

315

315

315

337.5

Electrical Degrees

Mechanical Degrees

FIGURE 8-12. Mechanical vs electrical degrees

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 119

See “Determining the Number of Poles” on page 100 for details on how to determine the
number of pole pairs and configuring the controllers.

The number must be entered using the Number of Pole Pairs menus in the in the Roborun
PC utility.

FIGURE 8-13. Number of pole pairs configuration

Or by sending the configuration command:

^BPOL channel nn

Entering a negative number of pole pairs will reverse the measured speed and the count
direction. It is useful when operating the motor in closed loop speed mode and if other-
wise a negative speed is measured when the motor is moved in the positive direction.

Configuring Number of Sensor Poles

Single pole absolute sensors like Resolvers, sin/cos and SSI encoders typically return an
angular value that is equal to the mechanical angle. The controller then converts the mea-
sured angle into the electrical angle for its internal operation, using the formula:

Electrical Angle = (Sensor Angle * Number of Poles) modulo 360

When used on motors with a high number of pole pairs, single pole sensors will measure
the electrical angle with degrading resolution as the number of motor poles is higher. For
example, a single pole sensor with 1o resolution on a 10 pole motor will produce an elec-
tric angle evaluations with 10o resolution, which will result in less than optimal operation.

To resolve this problem, some absolute sensors are available in multiple pole versions.
In that case, the sensor will outputs a 0-360 angle value multiple times during a full turn.
Note that the controller will not work if the number of sensor poles is higher than the
number of motor poles.

Enter the number of Sensor Poles in the SinCos/SSI Sensor Poles configuration menu in
the Roborun PC utility.

FIGURE 8-14. Sin/Cos/SSI Sensor Poles configuration

Brushless Motor Connections and Operation

120	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Or by sending the configuration command:

^SPOL ch poles

You can determine or verify the number of sensor pole pairs by following these steps:

1 �Set Motor Poles to 1

2 Launch the Calibration/Setup

3 �Make one full rotation of the motor shaft by hand and monitor the Angle value reported
in Roborun Utility.

4 � �Check how many times the Angle range (0-511) rolls over. This gives the number of sen-
sor poles.

5 Restore the correct values of motor and sensor poles

6 Launch the Calibration/Setup again

Important Notice

The number of motor poles and sensor poles are very important configuration pa-
rameters in sinusoidal mode. Using the wrong values will produce erratic behavior

and possibly damage.

Selecting and Configuring Supported Angle Sensors
In order for the proper voltage and phase to be applied to each of the 3 motor wires, the
rotor angular position must be known with precision at all times. Roboteq controllers sup-
port several sensors for achieving this.

Then select the method for capturing the rotor angle of the rotor as the motor spins. This
is done using the Sinusoidal Angle Sensor configuration menu in the utility.

FIGURE 8-15. Encoder Sinusoidal configuration

Or by sending the configuration command:

^BFBK ch mode

Where mode:

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 121

0: Encoder

1: Hall

2: Hall+Encoder

3: SSI sensor

4: Sin/Cos Sensor

5: Resolver

Each mode requires a various amount of additional setup and/or calibration as described in
the following sections.

Incremental Encoder-Only
A quadrature encoder can be used to determine the rotor position. Enter the Encoder PPR
using the PC Utility.

FIGURE 8-16. Encoder PPR configuration

Or by sending the configuration command:

^EPPR channel nn

Optimally, the encoder should have a PPR that is at least 128 x the number of pole pairs.
For example a motor with 4 pole pairs should have a 128 x 4 = 512 Pulse per revolution.
This will result in 2048 counts for a full turn of the rotor, and therefore the electrical angle
to be measured with 360 / 2048 * 4 = 0.7 degrees, resulting in a very smooth changing
sinusoidal drive to the motor. A significantly lower resolution encoder will results in a step-
ping sinusoid. A higher resolution encoder will not improve the waveform.

Since encoders do not give an absolute position, a reference search sequence is per-
formed automatically by the controller at every power up or when the controller switches
from a different mode to sinusoidal mode with encoder feedback

The search can also be forced manually by pressing the Sensor Setup button on the Diag-
nostic tab of the PC utility, or by sending the following maintenance or runtime command
from the console or the serial/USB port. The runtime command can also be executed via
CANOpen.

%CLMOD 2 or !MSS 1 (for channel 1) and
%CLMOD 3 or !MSS 2 (for channel 2).

Before trusting that reference search will be successful at every power up, try repeatedly
to send the sensor tuning command under real-life load conditions. After reference search
is completed, verify that the motor turns with the same efficiency in the forward and re-
verse direction.

Brushless Motor Connections and Operation

122	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Proper operation of the encoder can be verified by viewing the counter with the query:

?C [channel]

And verifying that it increments by the Encoder’s CPR (counts per revolution, or PPR *4)
when making a full turn, and returns to its original value after a full turn in the reverse di-
rection.

Hall-Only

In this mode, the Hall sensors are used to determine the angular position of the rotor.
Since transitions of the Hall pattern occur at every 60 degrees only, the controller will
estimate the current angle by interpolating in between two transition based on the cur-
rent motor speed. This technique works well as long as speed is stable and changes are
relatively slow. It also requires that the magnets and sensors are positioned with precision
inside the motor, which is not always the case in low cost motors. Compared to Trape-
zoidal mode, this mode will result is quieter motor operation because of the sinusoidal
commutation.

Proper operation of the Hall sensors can be verified by checking that the hall counter
changes by 6 * the number of poles over a full mechanical turn in the PC Utility or by us-
ing the query:

?CB [channel]

Alternatively, the following query can be run to view the state of the logic level of each
Hall inputs.

?HS [channel]

The Hall-only mode requires only a one time tuning during which their actual angular
position of each Hall sensor will be detected and stored. See Automatic Sensor Setup
procedure below.

Hall + Encoder

If the motor is fitted with Hall sensors and an Incremental Encoder, the controller can
be configured to use both sensors together. The Encoder’s PPR must be configured as
described above. In this mode, the controller’s operation is identical to when an Encoder
alone is used for feedback, except that there is no need for the reference search sequence
described above. When first energized, the motor will operate using the Hall sensor
until the first change to the Hall pattern is detected. This will set the angle reference for
the encoder. For this mode, it is critical that both the number of Encoder PPRs and the
motor number of pole pairs be entered correctly. Both counters must count in the same
direction.

The Hall Encoder mode requires only a one time tuning during which their actual angular
position of each Hall sensor will be detected and stored. See Automatic Sensor Setup
procedure below.

See above and below how to verify that the Encoder and Hall sensors are operating cor-
rectly.

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 123

Sin/Cos Analog

Some controller models can be interfaced to absolute position sensors with Sine/Cosine
output. These sensors are usually made using Hall technology and are built into the motor.
They provide two analog voltage output that are usually 90 degrees apart. The rotor angle
is determined by measuring the voltage ratio between the two signals. The controller can
compensate for differences in amplitudes between the two signals.

There are sensors whose signals are not 90 degrees apart. The controller can be con-
figured for use with sensors that have practically any phase shift. This is done using the
PSA - Phase Shift Angle configuration parameter. Note that angles are in 0-511 degrees
notation.

The proper operation of the Sin/Cos sensor can be verified by plotting in real time the volt-
ages of the sin and cos signals inside the Diagnostic tab of the PC utility

FIGURE 8-17. Diagnostic Tab with Auto Setup

Or using the following queries.

?ASI [channel]

Sin/cos sensors require a one-time setup and calibration. See Automatic Sensor Setup
procedure below.

Important Warning

The Tuning Fault LED will be on in the Roborun screen and the motor will NOT start
if the Sin/Cos has not been setup/calibrated.

Brushless Motor Connections and Operation

124	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Important Notice

Electrical noise on the sensor output will cause wrong angle readings. Shield the
wires and keep them as far as possible from the motor wires. If noise persists, add
a 10nF ceramic capacitor between the input pin and ground pin on the controller’s
connector

Synchro Resolver

Synchro Resolvers are a form of Sine/Cosine sensor based on transformer technology. It
is composed of a fixed primary coil, and two secondary coils positioned at 90o from each
other and that rotate with the rotor. A fixed frequency excitation voltage is fed in the pri-
mary. As the secondary coils turn, and take turn being parallel with the fixed primary, the
voltage amplitude induced in each varies as shown in the figure below.

Fixed Primary

Primary
Rotating�

Secondary 1

Sec 1

Sec 2

Rotatiion

Rotating�
Secondary 2

FIGURE 8-18. Resolver equivalent diagram and signals

Roboteq controllers models supporting resolvers use one output to generate the exci-
tation. The secondaries are then fed to two analog inputs. Exact wiring depends on the
controller model. Please consult the controller data sheet for pinout location. Resolvers
require one time calibrations similar to these for the sin/cos sensors and can be tested the
same way.

Important Warning

The Tuning Fault LED will be On in the Roborun Screen and the motor will NOT start
if the Resolver has not been setup/calibrated.

Digital Absolute Encoder (SSI) Feedback

Some advanced motors, incorporate an absolute position sensor with a high speed serial
interface based on the SSI protocol.

Roboteq controllers support SSI encoders with various resolutions. The SSI encoders give
the rotor absolute position. Nevertheless, a calibration must be done once in order to cap-
ture offset between the motor’s and the sensor’s 0 degrees position. In case of multi-turn
encoders the angle counter is taken into consideration during the calibration.

The SSI sensor’s angle counter is configured based on the following configuration fields:

•	 SSI Clock Speed (SCLK), it is common for all SSI sensor inputs

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 125

•	 SSI/SPI Number of bits (SLEN), the total number of bits of the SSI sensor frame.
•	 Counter start bit position (SSTA), the position of the first bit of the angle counter.
•	 Counter number of bits (SCLE), the number of bits of the angle counter.

FIGURE 8-19. SSI Sensor Configuration

Or by sending the configuration commands:

^SCLK nn

^SLEN channel nn

^SSTA channel nn

^SCLE channel nn

After enabling the Sinusoidal Mode and SSI Angle Feedback, verify first that the SSI
Counter displays a stable number that is different from zero. This will indicate that data is
output from the sensor and captured by the controller. Rotate the motor by hand to verify
that the counter changes.

The raw value of the SSI sensor can be read using the query:

?SFR

Brushless Motor Connections and Operation

126	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

The continuous 32-bit counter and speed that is driven by the SSI sensor can be read us-
ing the following queries respectively:

?CSS [channel]

?SS [channel]

Typically, SPI encoders are single pole sensors, meaning that they output 0 to their maxi-
mum value over a full mechanical turn.

Preparation for Automatic Sensor Setup
The rotor’s angle sensor is a critical element for good sinusoidal commutation. Wrong or
unstable angle reading can cause excessive current consumption, vibration, or even dam-
age. The sensor must be correctly and firmly attached to the motor so that it never slips
during operation. The table below shows the setup and calibration steps required for each
sensor type.

TABLE 8-1. Setup and calibration steps

Setup Encoder Hall
Hall+

Encoder SSI
Sin/
Cos Resolver

Min/Max Range Calibration No No No No Yes Yes

Zero reference search Yes(1) No No Yes Yes Yes

Hall Position Mapping No Yes(2) Yes(2) No No No

Linearity Correction Map No(3) No No(3) Yes(3) Yes Yes

Sensor/Winding Order Yes Yes Yes Yes Yes Yes

Note 1: Zero reference search must be performed at every power-up for Encoder mode
Note 2: Hall position mapping is optional but recommended for best results

Note 3: Linearity Correction is optional for digital encoders

Sensor setup and calibration is generally a one-time procedure. Sensor information is
stored in the controller’s configuration and calibration flash.

Reference Search Power

During the automatic sensor setup phase, the controller will drive the motor coils with a
slow-changing three phase current, creating a rotating magnetic field inside the motor. The
rotor’s magnets are attracted to the field, causing the rotor to follow turn. For best accu-
racy the rotor is driven for a full turn in the forward direction, and another full turn in the
reverse direction.

For the reference search to work, the current that is injected into the motor must be
strong enough to pull the rotor in perfect alignment. The motor must not be loaded during
this sequence. For best results, the current should be set equal to the motor’s nominal
amps rating.

Enter the value in Amps s in the “Reference Seek Power” configuration menu in the Rob-
orun PC utility.

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 127

FIGURE 8-20. Reference Seek Power configuration

Or by sending the configuration command:

^SREF channel amps (in amps * 10)

Important Warning

Do not select an amperage value that is above the maximum nominal value pub-
lished in the motor’s datasheet.

Important Warning

Calibration data is specific to a motor+sensor set. Changing the motor and/or sen-
sor requires recalibration.

Sensor Min/Max Range

Analog sensors like Sin/Cos and Resolvers have voltage output swings that can vary from
one sensor to another. During Automatic Setup, the motor is forced into rotation and
the min and max voltages for each sensor output signal is captured over a full turn of the
sensor. These values then determine offsets and multiplier that are saved in calibration
memory and subsequently used to scale the signals as necessary to produce a correct
angle measurement.

The min/max range calibration is a one time operation for a given sensor.

Zero Reference Search for Absolute Sensors

All absolute sensors (Sin/Cos, Resolver, SSI) cannot be trusted to be mounted so that
their 0 degree reference position exactly matches this of the motor’s windings. During
Zero Reference search, the motor is driven over known angular positions. The sensor mea-
surement is compared with the expected rotor position and an Angle Adjustment vale is
computed and stored in configuration memory.

Important Notice

All angles values entered or displayed by the controller are in 0-511 value where 0 =
0 degrees or radians, and 511 is 360o or 2r radians.

Zero Reference Search for Incremental Encoders

Incremental Encoders do not output an absolute position value. The Zero Reference
search is therefore performed every time the controller is powered on. See also “Incre-
mental Encoder-Only” on page 111.

Brushless Motor Connections and Operation

128	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Hall Sensors Position Mapping

Hall sensors are often not precisely located at the 0, 60, 120, 180, ... positions. While
some imprecision has little effect in trapezoidal mode, misalignment of even a few de-
grees will have disruptive effect when operating in sinusoidal mode. When used with Hall
sensors, the automatic setup procedure captures and maps the angle at which each of
the six hall transitions occurs within an electrical turn, regardless of their wiring order.

Linearity Correction Map

Sensor are not alway totally linear. This causes the sensed angle to be measured with
periodic errors along the sensor travel. During the automatic setup process, the controller
maps the values read from the sensor for every mechanical degree over a full turn. It then
build a correction table which is applied in real-time as the motor spins.

360

0
0 360

Linear

Non-Linear

Actual Mechanical Position

R
ep

or
te

d
Po

si
tio

n
by

 S
en

so
r

FIGURE 8-21. Sensor non-linearity correction

Windings and Sensor Order.

The wiring order of the U, V, W motor cable, the A, B, C Hall Sensors inputs, the A, B
Encoder inputs and/or the Sin, Cos signals are all related to each other. Swapping any of
the motor wires will make the motor turn in the opposite direction. Swapping any sensor
cables affects the angle and counting direction.

The Automatic Setup will detect the wiring order of the motor and sensors, and set the
corresponding bits in the SWD configuration register in order to virtually swap the connec-
tions so that all are moving/sensing in the same direction.

Running the Automatic Sensor Setup
The V2.x firmware has a new feature for Automatic Setup and Calibration of all the sup-
ported rotor sensor types. With a simple click, it performs the following:

a.	 Find the sensor polarity with respect to stator winding connection and set the
SWD Swap Windings configuration parameter.

b.	 Find angle offset from the stator zero degrees reference axis and store the value in
the “BADJ” Angle Zero Adjust configuration register.

c.	 Map the angular position of the Hall sensors and store the values in the HSAT Hall
Sensor Angle configuration table

d.	 Find the min, max and zero levels of the analog signals in case of sin-cos and
resolver for normalization of sine and cosine. The values are stored in the ZSMC
calibration register

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 129

After configuring the controller for sinusoidal mode and after selecting and configuring the
Angle Sensor, click on the Diagnostic tab of the Roborun+ PC Utility.

Important Notice

All angles values entered or displayed by the controller are in 0-511 value where 0 =
0 degrees or radians, and 511 is 360o or 2r radians.

FIGURE 8-22. Diagnostic Tab with Auto Setup

Select which motor channel to setup. Then click on the Motor/Sensor Setup button to
launch the Automatic process. The process can also be initiated using the serial com-
mands %CLMOD 2 or !MSS 1 for Channel 1 and %CLMOD 3 or !MSS 2 for Channel 2.

The motor will rotate at a RPM speed of 60/Number of Pole pairs. It will perform a full
turn in each direction and then stop. If the motor doesn’t turn, or turns with hesitations,
Click on the Cancel button (or send %CLMOD 0 or !MSS 0). Make sure that the motor is
not loaded. Adjust the Reference Search Current and try again. See “Reference Search
Power” on page 108.

After setup is finished, depending on the sensor type, the Utility will print the following
captured parameters on the console tab indicating that the process is complete:

Brushless Motor Connections and Operation

130	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TABLE 8-2. Motor/Sensor Setup parameters

Sensor Captured Values Description

All types BADJ
SWD

Zero Reference
Winding/Sensor Order

Hall, Hall+Encoder HSAT Hall Sensor Map

Sin/Cos, Resolver ZSMC Min/Max/Zero

Perform the Setup a few times to verify that it produces the same values. If the Zero Ref-
erence in particular varies significantly, increase the Adjust the Reference Search Current
and try again. See “Reference Search Power” on page 116.

The reference search will settle on a given electrical angle location. On a two pole motor,
this electrical angle value exists in 2 mechanical locations for that motor. After performing
a first search, rotate the motor shaft and repeat the search. On a perfectly constructed
motor, the search will settle at the same electrical angle on any of the other poles. In
practice, it is expected that the values will be off by one or two degrees from one pole to
another.

If the value is consistent from one measurement to another, and difference is larger than
a few degrees, this means the poles are not placed with precision in the motor and the
motor will not run efficiently. If the difference is very large (20 degrees or more), it is likely
that the angle sensor is not working correctly or that the number of poles of the motor
and/or sensor are not configured correctly.

Real-Time Charting

The Diagnostic tab includes a Fast-Updating that can be used to monitor useful infor-
mation during the Setup phase. For instance for observing that the Sin and Cos inputs
see a Sinusoidal shaped signal as the motor turns, or that the captured angle is chang-
ing steadily without noise or glitches. The chart is also useful for testing the motor im-
mediately after Setup. The table below shows the parameters that can be monitored
in the chart.

TABLE 8-3. Diagnostics monitor values

Parameter Description

Sin Voltage at Sin input of Sin/Cos or resolver

Cos Voltage at Sin input of Sin/Cos or resolver

Electrical Angle Electrical Angle

Calibration Angle Angle of the forced field applied during auto-setup

Sensor Angle Angle measured by the sensor

Motor Power PWM Level applied to the motor

Motor Amps Motor Amps

FOC Flux Amps Flux Amp, Direct Current, Id (cause no torque)

FOC Torque Amps Torque Amps, Quadrature Current, Iq (cause torque)

Hall Status State of all 3 Hall into a single 0-7 value

Hall A State of Hall A input

Hall B State of Hall B input

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 131

Parameter Description

Hall C State of Hall C input

FOC Angle Correction Correction determined and applied by FOC

Battery Volts Battery Volts

Power Per Phase U PWM on Phase U

Power Per Phase V PWM on Phase V

Power Per Phase W PWM on Phase W

Sense U Sensed voltage level at output U

Sense V Sensed voltage level at output V

Sense W Sensed voltage level at output W

BEMF U BEMF voltage on floating phase U (sensorless-only)

BEMF V BEMF voltage on floating phase V (sensorless-only)

BEMF W BEMF voltage on floating phase W (sensorless-only)

BEMF Integrator BEMF Integrator (sensorless-only)

Important Notice

All angles values entered or displayed by the controller are in 0-511 value where 0 =
0 degrees or radians, and 511 is 360o or 2r radians.

Sensor Linearity Correction

For Sin/Cos, Resolver and SSI encoders, it is possible to automatically check and even-
tually apply automatic correction to the sensor linearity. From the diagnostics tab, select
channel 1 or 2 and press the “Sensor Linearity Correction” button. The motor will spin for
a few electrical revolutions and then stop.

Brushless Motor Connections and Operation

132	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

FIGURE 8-23. Sensor Linearity Capture and Correction

The linearity of the sensor will be displayed on the screen. If the graph is flat at around
zero value, the sensor is linear and no correction is needed. If the shape is not a flat line
and is clean (i.e. without random noise and glitches), press “Apply Correction” button. It
can be beneficial to capture the linearity curve a few times and verify that it is consistent,
before applying it. If the graphs is noisy, has glitches or looks otherwise unusual, then
press close an do the Sensor Linearity procedure again. If the performance is not better
then the correction can be cleared by pressing the “Reset Linearity Correction” button.

Basic Motor Check

After the Automatic Setup completed successfully, the motor is ready to run. Use the
sliders on the Diagnostics Tab or on the Run Tab to apply power. Always run first in open
loop, and preferably with no or light load. Apply first a small command (100-200) and verify
that the motor spins without noise or rumble while using low current. Run the motor in
the opposite direction and verify that for the same command value, it reaches the same
speed and draws the same current. If the motor runs smoothly and with symmetrical per-
formance, repeat the test with higher command value.

If the performance is different in the forward vs reverse direction, the zero reference may
be wrong. Run the setup again. Noise or rumble typically points to problems with the sen-
sor.

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 133

Field Oriented Control (FOC)
In sinusoidal modes, using the rotor angle to determine the voltage to apply to each of
the 3 motor phase works well at low frequencies, and therefore at low rotation speed. At
higher speed, the effect of the winding inductance, back EMF and other effect from the
motor rotation, create a shifting current. The resulting magnetic field is then no longer op-
timally perpendicular to the rotor’s permanent magnets.

I = Iq I

Iq

Id

FIGURE 8-24. Perpendicular and non-perpendicular fields

As can be seen in figure 8-24, when the magnetic field is at an angle other than exactly
perpendicular to the rotor’s magnets, the rotor is pulled by a force that can be decom-
posed in two forces:

Lateral force causing torque, and therefore rotation. This force results from the Quadra-
ture current Iq, which is also called Torque current.

Parallel force that pulls the rotor outwards, creating no motion. This force results from the
Direct Current Id, which is also called Flux current.

Field Oriented Control is a technique that measures the useful Torque current and wasted
Flux current component of the motor current. It then automatically adjust the power (out-
put voltage amplitude) and phase angle applied to each motor phase in order to eliminate
the wasted Flux current.

Iq
PI Regulator

PI Regulator
Id

Inverse
Park SVPWM

Clarke

MOSFET
Bridges

Angle
Capture

Park

ia

ib

iα

iβ

iq

id

iq

id

vq

vd

vα

vβ-

-

θ

MotorSensor

Desired Torque
Current

Desired Flux
Current

FIGURE 8-25. FOC operation

Brushless Motor Connections and Operation

134	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Field Oriented Control is available on all models of Roboteq motor controllers. It uses a
classical implementation as described in the figure 8-25. The current in the motor phase
is captured, along with the rotor’s angle. From this are computed the useful Iq and waste-
ful Id. Two Proportional-Integral (PI) regulators then work in parallel to control the output
voltage amplitude and phase so that the desired Torque (Iq) and Flux (Id) currents are met.
The desired Flux current is typically set to 0 for SPM brushless dc motors, and so the reg-
ulator will work to totally eliminate the Flux current. The output of the PI d-q axis current
controllers yield the d-q axis reference voltage commands (Vd, Vq) applied to the motor
through the Space Vector Pulse Width Modulation (SVPWM) technique.

Both PI regulator have user-settable gains. They can be changed from the menus in the
RoborunPlus utility.

FIGURE 8-26. Current PI Gains

Or by sending the configuration command for single Channel Controllers:

^KPF 1 nn = Proportional Gain for Channel 1 Flux
^KPF 2 nn = Proportional Gain for Channel 1 Torque

^KIF 1 nn = Integral Gain for Channel 1 Flux
^KIF 2 nn = Integral Gain for Channel 1 Torque

Or by sending the configuration command for dual Channel Controllers:

^KPF 1 nn = Proportional Gain for Channel 1 Flux
^KPF 2 nn = Proportional Gain for Channel 2 Flux
^KPF 3 nn = Proportional Gain for Channel 1 Torque
^KPF 4 nn = Proportional Gain for Channel 2 Torque

^KIF 1 nn = Integral Gain for Channel 1 Flux
^KIF 2 nn = Integral Gain for Channel 2 Flux
^KIF 3 nn = Integral Gain for Channel 1 Torque
^KIF 4 nn = Integral Gain for Channel 2 Torque

Where nn = Gain * 10000, e.g. 125000 = 12.5 only (on version 3.x of firmware)

Note that these gains can be modified also during runtime by using the respective run-
time command CPG and CIG.

FOC Gains Determination & Tuning

The FOC Proportional and Integral gains for brushless dc motors could be automatically
calculated from “Motor characterization” tool at Roborun+ (see Roborun+ Utility User
Manual for more details).

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 135

Good PI gains are important for the controller to quickly reach and stabilize the desired Id
and Iq current. A very good approximation of the gain values can be calculated from the
motor’s Resistance and Inductance using the formulas:

Flux Proportional gain = Motor Phase Inductance(Henry) * Bandwidth

Flux Integral gain = Motor Phase Resistance(Ohm) * Bandwidth

Bandwidth is in rad/sec and according to Nyquist criteria the current loop bandwidth can-
not be more than the half of the current loop sampling time. Most commonly the current
loop bandwidth is set to the 1/10-1/20 of the current loop sampling time. The current loop
sampling time is at 16 kHz. So if we choose as current loop bandwidth the 300Hz then:

1Hz = 2π rad/sec

So for 300Hz Bandwidth = 300*2π rad/sec = 1885

Usually even smaller bandwidth can be as effective as the 300Hz. It is better to start with
the smaller possible gains and then tune according to the behavior of the motor. Test in
open loop with caution.

Example calculation for 300Hz bandwidth, 11mOhm Phase resistance and 90uH Phase
Inductance

Ki = 0.011 * 1885 = 20.735

Kp = 0,00009 * 1885 = 0.16965

FOC Testing and Troubleshooting

Verify that FOC is operating correctly by monitoring the following values with the PC
Utility:

FIGURE 8-27. FOC performance monitoring

Optimal performance is achieved when:

•	 FOC Flux Amps are close to 0.
•	 Motor Amps and FOC Torque Amps values are close.
•	 FOC Angle Correction is stable for stable motor Power (output voltage amplitude).

Check also when changing motor power how fast FOC Flux Amps is corrected to zero.
Tune FOC PI as necessary.

Brushless Motor Connections and Operation

136	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Unstable FOC correction is generally a sign of imperfections of the angle sensing (noise,
non-linearity, bad calibration, ...). Bad angle sensing causes the wrong values of Id and Iq
to be measured, which the FOC algorithm falsely attempts to correct, worsening the cur-
rent stability.

Decoupling Current Control
Decoupling Current Control is a powerful feedforward control technique, running in
parallel with the traditional FOC Id and Iq PI regulators, as shown in the following figure.
Decoupling control exploits the synchronous motor d-q equivalent circuit steady state
equations in order to estimate the required d-q axis voltage, based on the commanded
currents, measured speed and motor parameters Ld, Lq and voltage constant. Therefore,
this particular technique realizes the high response of speed control system by giving the
ability to control the d-axis and q-axis independently.

*Id PI

Id

*Iq

Iq

Limit

PI

Motor type
(SPM,
IPM)

*Is

Vd

Vq

*

*

Vbus = Vdc/√3 x scaling

Limit

Rectangle
to polar SVM

|Vsmag|

θdq
PMSM

θe

Vbus = Vdc/√3 x scaling

Decoupling
Control

Speed
calculation

ωe

*Id

*Iq

Vd** Vq**

Vd

Vq

FIGURE 8-28. FOC control including decoupling terms.

Below is a description of the parameters illustrated in Figure 8-…

ωe: electrical speed (rad/sec)

Ld: d-axis motor inductance (H)

Lq: q-axis motor inductance (H)

Iq
* : q-axis motor current command (A)

Id
* : d-axis motor current command (A)

Iq
 : q-axis motor current measurement (A)

Id
 : d-axis motor current measurement (A)

|Vsmag|: Commanded voltage vector magnitude (V)

θdq: FOC angle correction (rad)

θe: electrical angle (rad)

Vq
* : q-axis voltage command (V)

Vd
* : d-axis voltage command (V)

Decoupling Current Control

	 Advanced Digital Motor Controller User Manual� 137

Vq
** : Decoupling control q-axis voltage estimation (V)

Vd
** : Decoupling control d-axis voltage estimation (V)

In order to enable the decoupling control, the following parameters need to be set
through Roborun+ utility:

or by sending the following configuration commands from Console:

^LD ch nn,

where ch: motor channel, nn: D-axis motor inductance in Henry * 1000000

^LQ ch nn,

where ch: motor channel, nn: Q-axis motor inductance in Henry * 1000000

^VK ch nn,

where ch = motor channel and nn = peak value of motor induced phase to phase voltage
amplitude (produced back-emf) per krpm speed * 1000

The d and q axis inductances can be automatically calculated also through Motor
Characterization tool in Motor Sensor and Tuning setup wizard, supported in Roborun+
v3.0 utility (see Roborun+ Utility User Manual for more details). By setting all the previous
parameters with values higher than 0, the decoupling control is automatically enabled
for all closed loop modes including FOC torque and flux gains. Disabling can be done
by zeroing the d-q axis inductances and voltage constant. Default values for d-q axis
inductances and voltage constant are zero, meaning the decoupling current control
algorithm is by default OFF.

Furthermore, the switching mode should be set to “Sinusoidal” and the FOC gains should
be inserted according to the method described in “FOC Gains Determination & Tuning”
chapter at Section 8. It is noted that the decoupling control algorithm applies only at close
loop operating modes, including FOC torque and flux gains.

Example

Below is a representative current response implemented test result in a G series product.
The parameters were got from speed PI auto-tune process:

Phase resistance Rs : 0.048 Ω

Brushless Motor Connections and Operation

138	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

D-axis inductance Ld : 0.375 mH

Q-axis inductance Lq : 0.383 mH

Voltage constant Ke: 37.75 V/krpm

Control mode : Torque mode

Current loop PI regulators bandwidth selected : 800 Hz

Commanded current: 0-30 A (Step)

Motor speed: 500 rpm

FIGURE 8-29. Current response test result.

From the above results the quicker response, as well as the lower fluctuation in Flux cur-
rent can be observed with the decoupling control terms enabled.

Next, the same motor is tested in close loop speed mode, in order to evaluate the speed
response. Below the parameters of the test is illustrated:

Current loop bandwidth selected : 800 Hz

Speed loop bandwidth selected: 10 Hz

Command through ramp: 0-1100 rpm

Acceleration: 2000 rpm/sec

Deceleration: 2000 rpm/sec

Field Weakening

	 Advanced Digital Motor Controller User Manual� 139

FIGURE 8-30. Speed response test result.

From the above test results important improvement is speed response is obvious, espe-
cially during deceleration.

Field Weakening
Field weakening is a technique that is used in order to increase the operating speed range
of motor drive, as shown in the torque-speed curve below. At Constant Torque region the
synchronous motor operates under Maximum Torque per Ampere mode, while in Con-
stant Power region the synchronous motor operates under Flux Weakening mode in order
to keep stator voltage constant. This can be done by applying some Flux (Id) current, even
though this also increases somehow the total consumed current from the motor and the
source.

FIGURE 8-31. Example of a torque speed curve of a motor operating over the rated speed with field
weakening.

Brushless Motor Connections and Operation

140	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

RoboteQ controllers are capable of operating at field weakening region through two meth-
ods, manual and automatic, described below. It is noted that only one method, manual or
automatic can be applied each time from user.

Manual Field Weakening
Manual field weakening is implemented by applying a non-zero set point for the Flux cur-
rent. This can be done from the console, the serial port, or from a MicroBasic script with
the command:

!GID ch Amps*10

The amount of Flux current should be different at low and high speed, typically starting
with zero, and increasing after a given RPM threshold is reached. Below is an example of
a MicroBasic script that changes the Flux set point according to such a rule.

top:

Speed = abs(getvalue(_S, 1)) ‘ Read motor speed from Encoders

if (Speed > 5000) ‘ check if above 5000 RPM

FluxSetpoint = (Speed – 5000) / 100 ‘ 1A per 100 RPM above 5000

else

FluxSetpoint = 0 ‘ No Flux current below 5000 RPM

end if

if (FluxSetpoint > 100) then FluxSetpoint = 100 ‘ Cap to 10.0 Amps

setcommand(_GID, 1, FluxSetpoint) ‘ Apply Flux setpoint

wait(10)

goto top ‘ repeat every 10ms

Automatic Field Weakening
Below block diagram describes the automatic field weakening function. The field weaken-
ing Id command is regulated from a voltage PI additionally to a feedforward field weaken-
ing function for optimized response.

Current controllerPIFW Vratio

Feedforward
FW function

*Iq ωe Ld, Lq, Ke

*Id
Limit

FIGURE 8-32. Automatic field weakening control block diagram.

Field Weakening

	 Advanced Digital Motor Controller User Manual� 141

Below is a description of the parameters illustrated in Figure 8-32.

ωe: electrical speed (rad/sec)

Ld: d-axis motor inductance (H)

Lq: q-axis motor inductance (H)

Iq
* : q-axis current command (A)

Id
* : d-axis current command (A)

Ke: Voltage constant (V/rad/sec)

Vd,cmd: d axis voltage command(V)

Vq,cmd: q axis voltage command (V)

Vs,max: maximum applied stator voltage (V)

FW Vratio: the (%) of the maximum permitted stator PWM voltage to be regulated from
field weakening algorithm

The field weakening control is applicable for both surface and interior permanent magnet
motors, for all closed loop modes with sinusoidal commutation and configured FOC
torque, flux, and speed gains. In order to enable the automatic field weakening control,
the following parameters needed to be set:

Or by sending the following configuration commands from Console:

^FWVR ch nn,

where ch: motor channel, nn: field weakening voltage ratio (%) * 10

^TNM ch nn,

where ch: motor channel, nn: torque constant (Nm/Apeak) * 1000

^MXPW ch nn,

where ch = motor channel and nn = maximum motor output power (W) * 10

By setting the field weakening voltage ratio with values < 100%, the field weakening
control is automatically enabled for all closed loop modes including FOC torque, flux,
and speed gains (no additional Enable/Disable input command required). Disabling can be

Brushless Motor Connections and Operation

142	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

done by setting field weakening voltage ratio at 100 %. Default values for field weakening
voltage ratio is 100%, meaning that field weakening control is by default OFF. Value range
for field weakening voltage ratio is 75% - 100%. Typical field weakening voltage ratio val-
ues should be around 90-97 %, depending on the application.

Two other important parameters for field weakening operation, that need to be configured,
are the maximum output motor power (W) and torque constant (Nm/Apeak). As described
above, these parameters will define the Iq current limit at constant power region. It is
noted that the q-axis current limitation at constant power region is necessary in order to
release d-axis current for the field weakening process.

By configuring the above mentioned parameters field weakening voltage ratio, maximum
output motor power and torque constant the field weakening control operates only with
the voltage PI regulator shown in figure below. In order to enable the feedforward field
weakening function, the following parameters needed to be set:

or by sending the following configuration commands from Console:

^LD ch nn,

where ch: motor channel, nn: D-axis motor inductance in Henry * 1000000

^LQ ch nn,

where ch: motor channel, nn: Q-axis motor inductance in Henry * 1000000

^VK ch nn,

where ch = motor channel and nn = peak value of motor induced phase to phase voltage
amplitude (produced back-emf) per krpm speed * 1000

The d and q axis inductances can be automatically calculated also through Motor Char-
acterization tool in Motor Sensor and Tuning setup wizard, supported in Roborun+ v3.0
utility (see Roborun+ Utility User Manual for more details). By setting both the following
parameters with values higher than 0, the feedforward field weakening is automatically
enabled, provided that the field weakening voltage ratio has been set less than 100%.
Disabling can be done by zeroing the d-q axis inductances and voltage constant. Default
values for d-q axis inductances and voltage constant are zero, meaning the feedforward
field weakening algorithm is by default OFF.

Interior Permanent Magnet Motor Operation

	 Advanced Digital Motor Controller User Manual� 143

Example

Below is a representative torque vs speed test result, showing the significant increase in
operating speed range.

Current limit: 33 A

Input dc voltage : 24 V

Field weakening voltage ratio: 95%

Control mode : Close loop torque

Test speed range: 200 – 3700 rpm

Current loop bandwidth selected : 800 Hz

FIGURE 8-33. Torque vs speed curve with and without field weakening control.

Interior Permanent Magnet Motor Operation
IPM (interior permanent magnet) motor is an Alternating Current (AC) synchronous motor,
where the permanent magnets are inserted inside the rotor, while in brushless dc motors
the permanent magnets are mounted on the surface of the rotor, as illustrated in figure
8-34.

Brushless Motor Connections and Operation

144	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

FIGURE 8-34. (a) IPM motor (b) brushless dc motor configurations

Below the basic structural and operating differences between the IPM and BLDC (Surface
Permanent Magnet - SPM) motor:

IPM

•	 Reduce the risk of a magnet being peeled off by centrifugal force
•	 Higher total torque (IPM motor produces both magnetic and reluctance torque)
•	 Higher speed range (IPM motor has higher field weakening capability, due to the

insertion of the permanent magnets inside the rotor)
•	 Reduce the risk of Permanent Magnets demagnetization
•	 Higher efficiency (lower permanent magnet Eddy current losses)

BLDC

•	 The permanent magnets are mounted on the surface of the rotor
•	 PMs are glued (provokes aging due to centrifugal forces and heat) or banded
•	 Lower total torque (BLDC produces only magnetic alignment torque)
•	 Lower speed range (BLDC motor has lower field weakening capability, due to the

PMs location at the airgap)
•	 Lower efficiency (higher PM Eddy current losses)

Typical IPM motor torque-speed and power-speed curves are described in below figures,
consisting of Constant Torque Region (CTR) and Constant Power Region (CPR). It is
evident that in the CPR the torque reduction for the same motor current is low, especially
for lower loading conditions, due to the increased reluctance torque added to the magnet
torque.

Constant Torque Region IPM motor control algorithm

	 Advanced Digital Motor Controller User Manual� 145

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

Rotational Speed, n (rpm)

T
or

qu
e,

 T
 (N

m
)

1.75 pu load
1.5 pu load
1.25 pu load
1 pu load
0.75 pu load
0.5 pu load

FIGURE 8-35. Typical IPM motor torque-speed curve.

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

Rotational Speed, n (rpm)

Po
w

er
, P

 (k
W

)

1.75 pu load
1.5 pu load
1.25 pu load
1 pu load
0.75 pu load
0.5 pu load

FIGURE 8-36. Typical IPM motor power-speed curve.

Constant Torque Region IPM motor control algorithm
For optimal efficiency during the whole IPM motor operating range the control technique
employed for the CTR – that is the region up to rated speed - is the Maximum Torque
Per Ampere (MTPA). According to that method both torque (Iq) and field weakening (Id)
currents need to be adjusted for each torque demand as shown in figure 8-37. The calcula-
tions for the required currents are implemented automatically by the controller, by utilizing
the IPM motor equivalent d-q axis (Park transformation) circuit equations. In CTR, the only
absolute limit applied in the motor is the motor thermal current maximum limit. As shown
in figure 8-38 the current vector is below current limit and voltage limit loops.

Brushless Motor Connections and Operation

146	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

FIGURE 8-37. IPM motor required Iq, Id with produced electromagnetic torque.

FIGURE 8-38. IPM motor MTPA d-q current control strategy on CTR - low speed region.

In order to effectively operate the IPM motors at MTPA curve, the following data required
to be set during controller configuration from Roborun+ utility:

or by sending the configuration command from Console tab:

^LD cc nn

where cc = motor channel and nn = motor d-axis inductance (H) * 1000000

^LQ cc nn

where cc = motor channel and nn = motor q-axis inductance (H) * 1000000

^VK cc nn

where cc = motor channel and nn = peak value of motor induced phase to phase voltage
amplitude (produced back-emf) per krpm speed * 1000

Constant Power Region IPM motor control algorithm

	 Advanced Digital Motor Controller User Manual� 147

Above values are necessary in order to calculate the optimal Id, Iq current commands
needed to be applied to FOC motor operation. Typically, these values are included in each
IPM motor technical datasheet. Alternatively, the d-q axis motor inductances can be cal-
culated from “Motor characterization” tool at Roborun+ utility (see Roborun+ Utility User
Manual for more details).

Furthermore, the switching mode should be set to “Sinusoidal” and the FOC gains should
be inserted according to the method described in “FOC Gains Determination & Tuning”
chapter at Section 8 of Motor Controllers Manual, considering as phase inductance the
d-axis inductance Ld for flux proportional gain and q-axis inductance Lq for torque propor-
tional gain, respectively. It is noted that the IPM motor operation algorithm applies only at
close loop operating modes, including FOC torque and flux gains. In all other cases, IPM
motor can operate as a brushless dc motor.

Example:

Consider the IPM motor with the following characteristics provided from manufacturer:

R (phase resistance) = 85 mOhm

Ld (d-axis inductance) = 580 uH

Lq (q-axis inductance) = 850 uH

The FOC gains for 300 Hz current loop bandwidth are calculated as follows:

Torque proportional gain = Q-axis inductance (H) * Bandwidth = 0.000850 * 1884 = 1.602

Torque integral gain = Phase resistance (Ohm) * Bandwidth = 0.085 * 1884 = 160.14

Flux proportional gain = D-axis inductance (H) * Bandwidth = 0.000580 * 1884 = 1.092

Flux integral gain = Phase resistance (Ohm) * Bandwidth = 0.085 * 1884 = 160.14

Constant Power Region IPM motor control algorithm
When the motor operates in the high speed region - CPR, the MTPA d-q axis motor cur-
rents should be appropriately regulated, in order to satisfy the voltage limitation defined
from battery dc voltage and PWM modulation method utilized, in conjunction with the cur-
rent limitation, as shown in below graph. Therefore, the field weakening Id current should
be increased, in absolute value, at this mode of operation to weaken the permanent mag-
net field and thus, the produced back-EMF of the motor.

The field weakening current required for the constant power region is calculated from the
automatic field weakening function described analytically in chapter “Field Weakening” at
Section 8, which is the same for SPM and IPM motor type.

Therefore, in order to operate the IPM motor at full speed range (CTR and CPR) all the
requested parameters for MTPA operation and field weakening control should be properly
configured. It is also noted that in IPM motor configuration, external manual field weaken-
ing current is not supported.

Brushless Motor Connections and Operation

148	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

MTPV

FIGURE 8-39 IPM motor field weakening/MTPV control strategy on CPR - high speed region.

Operating Brushless Motors
This section covers operating features that are common to Brushless Motor control, re-
gardless of the commutation mode.

Stall Detection
The rotor sensors and the encoders can be used to detect whether the motor is spinning
or not. The controller includes a safety feature that will stop the motor power if no rotation
is detected while a given amount of power is applied for a certain time. Three combina-
tions of power and time are available:

•	 250ms at 10% power
•	 500ms at 25% power
•	 1s at 50% power

If the power applied is higher than the selected value and no motion is detected for the
corresponding amount of time, the power to the motor is cut until the next idle motor
command is given (0 in case of speed modes, equal to feedback in case of position
modes). This function is controlled by the BLSTD - Brushless Stall Detection parameter
(see “BLSTD - Brushless Stall Detection” in Command Reference section). Do not disable
the stall protection.

A stall condition is indicated with the “Stall” LED on the Roborun PC utility screen.

The detection uses the speed measurement from the rotor sensor.

Important Notice

In close loop modes, it is quite possible to have the motor stopped while power is
applied to them. That could happen while stopped uphill, for example. Select the
appropriate triggering level for your application

Operating Brushless Motors

	 Advanced Digital Motor Controller User Manual� 149

Sensor Error Detection

Sensor Error Detection methods have been implemented based on the kind of sensors
used for commutation.

The user can select one of three options, Disabled, Tolerant and Strict (see “SED -
Sensor Error Detection”, page 366).

•	 Disabled: All sensor errors are ignored

•	 Tolerant: The fault will be active after 5 errors. The counter is reset if there is no
sensor error for 128 ms

•	 Strict: The fault will be activate on the first sensor error occurrence.

If Hall sensor is used (Hall Trapezoidal and Hall Sinusoidal) we consider as a sensor error:

•	 An invalid hall state (0 or 7 for 120 degrees sensors, 2 or 6 for 60 degrees sen-
sors).

•	 An out of sequence hall state. When the motor moves and the hall state has a
specific value, only two out of the rest 5 hall states can be considered as expected
values. Which of the two, depends on direction.

If Hall+Encoder sensors are used (Hall+Encoder Sinusoidal), we consider as sensor error:

•	 Whatever is considered as error in case of hall error.

•	 When the electrical angle of the encoder and the electrical angle of the hall sensor
are more than 45 degrees apart in three sequential hall transitions.

Note: In case of Hall+Encoder Sinusoidal, whenever an error occurs concerning the
encoder, the controller resynchronizes hall sensor and encoder, recovering the error.

If SinCos or Resolver sensors are used (SinCos Sinusoidal or Resolver Sinusoidal), we
consider as sensor error:

•	 Upon configuration and the sensor is uncalibrated (see ZSMA - Cos Amplitude and
ZSMC - SinCos Calibration). Calibration is done automatically during Motor/Sensor
setup.

In all other switching modes Sensor Error Detection is not applicable.

Important Note

In case of dual channel controllers, and since the default value of SED is Strict, the
Sensor Error flag will be triggered even if only one channel is used. This will be
mainly due to 2nd channel being in default configuration (Hall Trapezoidal and SED
to strict) and no hall sensor connected to the respective connector. So if you wish to
run with only one channel make sure to disable the SED in the second one.

Speed Measurement using the angle feedback Sensors
Information from Hall, SPI/SSI and sin/cos sensors is used by the controller to compute
the motor’s rotation speed.

Brushless Motor Connections and Operation

150	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

When Hall sensors are used, speed is determined by measuring the time between Hall
sensor transitions. This measurement method is very accurate, but requires that the mo-
tor be well constructed and that the placement between sensors be accurate. On preci-
sion motors, this results in a stable speed being reported. On less elaborate motors, such
as low-cost hub motors, the reported speed may oscillate by a few percent.

Speed measurement is very precise with digital absolute sensors (SSI). Sin/Cos sensors
operating without noise also give a very precise value.

The motor’s number of poles must be entered as a controller parameter in order to pro-
duce an accurate RPM value. See discussion above. The speed information can then be
used as feedback in a closed loop system. Motor with a more precise Hall sensor posi-
tioning will work better in such a configuration than less precise motors.

If the reported speed is negative when the slider is moved in the positive direction, you
can correct this by putting a negative number of poles in the motor configuration. This will
be necessary in order to operate the motor in closed loop speed mode using hall sensor
speed capture.

Distance Measurement using Hall, SSI or other Sensors
When Hall sensors are used, the controller automatically detects the direction of rotation,
keeps track of the number of Hall sensor transition and updates a 32-bit up/down counter.
The number of counts per revolution is computed as follows:

Counts per Revolution = Number of Poles * 6

With Resolver or Sin/Cos sensors, the controller accumulates the sensor angle data to
recreate an accurate and high resolution 32-bit counter. For these sensors, the number of
counts per revolution is:

Counts per Revolution = Number of Sensor Poles * 512

With SSI sensor, the controller accumulates the SSI data difference to recreate an ac-
curate and high resolution 32-bit counter. For these sensors, the number of counts per
revolution is:

Counts per Revolution = Number of Sensor Poles * (1 << SSI Counter number of bits)

The counter information can then be read via the Serial/USB port, CAN bus, or can be
used from a MicroBasic script. The counter can also be used to operate the brushless mo-
tor in a Closed Loop Position mode, within some limits

Introduction to AC Induction Motors

	 Advanced Digital Motor Controller User Manual� 151

SECTION 9 	 AC Induction
MotorOperation

This section discusses the controller’s operating features and options when using three
phase AC Induction motors.

Introduction to AC Induction Motors
Three phase induction motors are the most common types of electrical motors. They have
a very simple construction composed of a stator covered with electromagnets, and a rotor
composed of conductors shorted at each end, arranged as a “squirrel cage”. They work on
the principle of induction where a rotating electro-magnetic field it created by applying a
three-phase current at the stators electromagnets. This in turn induces a current inside the
rotor’s conductors, which in turns produces rotor’s magnetic field that tries to follow sta-
tor’s magnetic field, pulling the rotor into rotation.

Stator

Rotor

FIGURE 9-1. AC-Induction Motor

Benefits of AC Induction Motors are:

	• Induction motors are simple and rugged in construction. They are more robust and can
operate in any environmental condition.

	• Induction motors are cheaper in cost due to simple rotor construction, absence of brush-
es, commutators, and slip rings

AC-induction-Motor-Operation

152	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

	• They are maintenance free motors unlike dc motors due to the absence of brushes,
commutators and slip rings.

	• Induction motors can be operated in polluted and explosive environments as they do not
have brushes which can cause sparks

Asynchronous Rotation and Slip
AC Induction motors are Asynchronous Machines meaning that the rotor does not turn at
the exact same speed as the stator’s rotating magnetic field. Some difference in the rotor
and stator speed is necessary in order to create the induction into the rotor. The difference
between the two is called the slip.

Slip is measured in Hertz. It is the difference of the frequency generated by the controller,
and the rotor’s frequency, as determined by the formula

f = ((RPM / 60) * NumberOfPolePairs)

Optimal slip varies from the motor to motor and is in the range of typically 2 to 10Hz.

As seen from the figure below, when the slip is 0, i.e. the rotor turns at exactly the same
speed as the stator field, torque totally disappears. Within the stable operating region, the
Torque is proportional to the Slip. The torque and motor efficiency then quickly drops when
the slip grows past its optimal value.

Torque
(Produced on Motor Shaft)

Torque
(Applied to Generator Rotor)

Stable
Region

Motoring

GeneratingSynchronous Speed
Slip = 0
Torque = 0

Stable
Region

Slip (Hz)

Rotor Speed
(RPM)

0

0 RPM

FIGURE 9-2. Torque vs. Rotor Speed graph for ACIM

The main task of the motor controller is to generate a rotating magnetic field whose
frequency and strength is such that the rotor will operate within the motor’s optimal slip
range. Three techniques are supported by Roboteq for achieving this:

Scalar, Volts per Hertz (VPH)

Constant Slip

Field Oriented Control

Each of these techniques, benefits, and limitations are described in the following sections

Selecting and Connecting the Encoder

	 Advanced Digital Motor Controller User Manual� 153

Connecting the Motor
An AC Induction motors have just 3 power wires which must be connected to the control-
ler’s U V and W terminals. The connection order is not important. However, swapping any
two motor connections will make the motor turn in the opposite direction.

Selecting and Connecting the Encoder
A speed sensor must be used to measure and control the motor’s slip when running in
Constant Slip mode and Torque/Speed FOC mode. This is done using an incremental en-
coder. Most AC induction motors come with a built-in quadrature encoder. These encoders
typically have a relatively low number of counts. 32 or 64 Pulses Per Revolution (PPR) rota-
tion are typical values. A low count encoder results in low frequency pulses.

When using encoders up to 128 Pulses Per Revolution, the controller evaluates the rota-
tion speed by measuring the time between encoder pulses. This results in measurement
with a resolution of 0.1Hz even at full speed.

When using encoders with higher PPR, speed is measured by counting the number of
encoder signal transitions over a 10ms period. Prefer therefore a high-count encoder of
around 1000 PPR for better speed measurement resolution.

Unless otherwise noted in the product’s datasheet, all Roboteq’s AC Induction Motor
Controllers have to pull up resistors that can connect to open collector encoder outputs.
Controllers also have capacitors to help filter out any electrical noises that contribute to
fake encoder readings.

Encoder
4.7K

10nF

GND

5VOut

A
B

Controller I/O Connector

FIGURE 9-3. Encoder connection

Testing the Encoder
To test the encoder, use the PC utility to enable the encoder and set its number of Pulses
Per Revolution (PPR). Go to the Utility’s Run tab, enable the Encoder Count in the chart.
Make a full turn of the motor shaft by hand. Verify that the counter has changed by the
number of PPR * 4.

Prior to enabling Constant Slip or FOC Modes, operate the motor in open loop Volts per
Hertz mode with slip control disabled. To disable slip control, set the encoder as No Action
in the configuration menu.

AC-induction-Motor-Operation

154	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Apply a positive motor command. Verify that the motor shaft is moving in the desired direc-
tion. If the motor moves in the opposite direction, swap any two of the three motor cables, or
change the motor direction to Inverted in the motor configuration.

If the motor moved in the desired direction, then verify that the encoder counter increments
when a positive motor command is applied. If the counter decrements, then either swap the
A and B encoder wires or enter a negative number of PPRs in the encoder configuration.

Open Loop Variable Frequency Drive Operation
In its simplest operating mode, the controller will output to the motor a three-phase sinusoid
whose voltage and frequency change together at a fixed ratio. This mode is called Scalar be-
cause of the fixed ratio between the Voltage and Frequency that is applied to the motor.

The ratio is set by the VPH - Volts Per Hertz configuration parameter.

-1000

-800

-600

-400

-200

200

400

600

800

1000

-1000 0 1000

Stator Frequency
(Hz)

Motor Command

48V Battery
VpH = 0.05 V/Hz

48V Battery
VpH = 0.1V/Hz

24V Battery
VpH = 0.1V/Hz

+ Battery
Volts

- Battery
Volts

FIGURE 9-4. VPH graph for ACIM

The figure above shows an example of the resulting stator frequency for a given motor
command. In open loop mode, Motor commands range from -1000 to +1000 and result in
the output voltage to range between -VBat to +VBat respectively

As long as the motor is not overloaded, the rotor RPM will be

((Stator Frequency - Slip) / Number of Pole Pairs) * 60

Figuring the Motor’s Volts per Hertz
Each motor has a value for the optimal Volts per Hertz ratio. It can be determined by
the operating frequency and rated voltage written of the motor’s label. The figure below
shows values from a real motor.

Closed Loop Speed Mode with Constant Slip Control

	 Advanced Digital Motor Controller User Manual� 155

Watt
V
Amps
RPM
Nm

50Hz
Encoder 64 Pulses

3500
48Bat
100
1450
23

V fase 3 x 27

FIGURE 9-5. ACIM label

For this motor, the VPH can be determined by dividing the 48 V phase to phase motor
voltage amplitude by the 50Hz frequency. In this case 0.96 Volts per Hertz. It is worth
mentioning that the rated voltage in the calculated VPH is related to the amplitude of the
phase to phase voltage (not RMS value). Therefore, if the motor manufacturer provides
the nominal stator voltage in RMS, it should be transformed to peak voltage value.

You can validate that the rated VPH is applied if the motor at no load reaches the rated
speed when applying maximum motor command (Power =1000).

Note that this value is for the optimal torque as rated on the label. If the load is a lot light-
er, the VpH will be too high and result in excessive current consumption. If the load is a
lot heavier, the VpH will be too low and the motor will not be able to drive it. The VpH will
therefore need to be different from this computed based on actual load conditions. Always
first monitor the motor consumption at no load. Adjust the VpH to a lower value if the no
load current appears too high.

Maintaining Slip within Safe Range
Open Loop, or Scalar, the mode does not require encoders for its operation. If the load is
known to always be within the motor’s max torque, the motor can be trusted to always
be able to drive it. In this case, an encoder does not need to be connected. If an encoder
is connected - to measure and report speed, for example - then it must be configured as
“No Action” in the PC Utility.

For added safety and better performance, however, an encoder can be installed and en-
abled to measure the rotor’s speed, and therefore the slip, in real-time. When the encoder
is enabled and configured as “Feedback”, the controller will lower the voltage and frequen-
cy if the slip exceeds twice the value stored in the Optimal Slip configuration.

Prior to enabling the encoder as Feedback, verify that the encoder count direction has the
same polarity as the motor command.

Closed Loop Speed Mode with Constant Slip Control
In this mode, the controller will automatically adjust the voltage and frequency in order to
reach and maintain the desired speed, even as the load is changing, while operating with-
in the optimal slip range (which is the half of the configured maximum slip).

The “Optimal slip” value in the configuration is referred to the optimal slip at rated fre-
quency where the motor produces the maximum breakdown torque Sk. The induction
motor slip is controlled to the half of the optimal slip for stability reasons, in order to be on
the safe side in case of a quick transient situation.

AC-induction-Motor-Operation

156	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

To configure this mode, first set the controller in open loop mode as described in the pre-
vious section. Verify that the encoder is working and is counting with the correct polarity.

Once the encoder is verified to work and the motor spins in the open loop, follow these
steps. Using the Roborun PC utility:

	• Select Close Loop Constant Slip Mode

	• Set the PID gains found in the Motor Output, Closed Loop Speed Parameters menus
(do not use the FOC PID gains). Try first with gains of P=0, I=1, D=0. These values will
produce adequate results in most cases. Additional turning may be needed.

	• Set the Max RPM configuration to the speed that must be reached at full throttle (ie
when command = 1000). Make sure to enter a value that is within the physical reach of
the motor under the expected maximum load condition.

	• Enter the lowest acceleration rate that is acceptable for the application. Rapid chang-
es will create current surges and should therefore not be allowed to be higher than
necessary.

	• Save the settings to the controller.

The motor speed can now be set to be any value between 0 and plus/minus the max-
imum RPM configured above when sending a command ranging from -1000 to +1000
using the serial, analog or pulse inputs.

The motor speed can also be set to an absolute RPM value by sending the S (Speed)
command via serial, USB, CAN or Scripting.

When exercising the motor with the PC utility, monitor the Slip, the Rotor RPM, Stator
RPM and the Motor Amps.

The slip will stabilize at the Optimal Slip setting.

Field Oriented Control (FOC) mode Operation
Field Oriented Control (or Vector Drive) is a technique by which the magnetic field gen-
erated in the stator is adjusted in relation to the field induced in the rotor in a manner to
generate optimal torque at all times and all load conditions.

I

Iq

Id

S
S

N
N

Rotor

Stator

FIGURE 9-6. FOC on ACIM

The optimal rotation occurs when the magnetic field induced in the rotor is perpendicular
with this of the stator. Practically the fields the two fields are never exactly perpendicular.
As shown in the diagram above, the angled field I am made of an outward pulling flux field
(Id) and perpendicular pulling torque field. The torque field is the one that causes the rota-
tion and that the controller will maximize. Flux field is not causing any rotation and there-
fore must be minimized. Some flux is necessary at all times, however, in order to create
the induction in the rotor.

Field Oriented Control (FOC) mode Operation

	 Advanced Digital Motor Controller User Manual� 157

The challenge in induction motors is that the rotor flux’s absolute position cannot be mea-
sured physically. It is determined mathematically using known speed, voltage and current,
and a model representation of the motor’s main parameters shown in the figure below.

	

Rs
Stator

Resistance

Lls
Stator

Leakage
Inductance

Rr
Rotor

Resistance

Llr
Rotor

Leakage
Inductance

Lm
Mutual

Inductance

FIGURE 9-7. Electrical representation of ACIM

These parameters include per phase rotor resistance ‘Rr’, rotor leakage inductance ‘Llr’,
mutual inductance ‘Lm’ and rotor leakage inductance ‘Llr’. Usually, motor manufacturer will
provide you an equivalent circuit of the induction motor that contains Rr, Rs, Lm, Llr, Lls

In FOC, therefore, rotor flux and motor torque can be individually controlled regardless
of load and speed. FOC offers better dynamic performance, accurate current control and
ensures maximum efficiency, unlike traditional scalar control methods such as Open Loop
VpH and Constant Slip Control.

Under FOC operation, AC induction motors can be run in either FOC torque mode or FOC
speed mode. FOC torque mode allows users to command a torque to a motor in terms of
Amps. While FOC speed will regulate the speed at the command/desired value.

Note that, with a bad tuning of FOC (flux and torque) PID, the motor Amps can be higher
than the Amps Limit. If that happened, try use lower bandwidth for FOC tuning (see in
Chapter FOC Gains Determination & Tuning).

Configuring FOC Torque Mode
To configure FOC mode, first set the controller in Open Loop (Volts per Hertz) mode as
described in one of the previous sections. Verify that the motor is spinning in the desired
direction and that encoder is working and is counting with the correct polarity. See Testing
the Encoder section above.

Once the encoder is verified to work and the motor spins in the open loop, follow these
steps. Using the Roborun PC utility:

	• Enter the motor parameters under the section “Motor Parameters” in RoboRun
configuration. Usually, motor manufacturer will provide you an equivalent circuit of the
induction motor that contains Rr, Rs, Lm, Llr, Lls.

	• Set the Flux Amps. In order to find the optimal flux amps, run the motor in Volts per
Hertz (VpH) mode with small/no load using the motor’s rated VpH ratio. Then watch the
flux amps in the PC utility. Enter this value in the configuration. This flux amps can be
increased (Flux Strength) for low speed and high torque operation requirements and
can be decreased (Field Weakening) for high speed and low torque operation require-
ments.

AC-induction-Motor-Operation

158	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

	• Set the operating mode to FOC torque. Set Amps limit according to the application’s
need but do not exceed the motor specifications.

	• Save the settings to the controller.

	• Next step is to tune FOC (Flux and Torque) PID. Start with low proportional gain e.g.
0.1, and then set some Integral gain. Integral gain is more important in this case.
Alternatively use the method as described in chapter “FOC Gains Tuning” in Section 8,
using the Stator Resistance (Rs) and the Stator Inductance (Ls).

	• Monitor and Record the Flux Amps and Torque Amps for the desired motor channel
when tuning the FOC PID.

	• Put some high load on the rotor and command a step Torque Amps from the slider bar
(say 10A). Record the “FOC Torque Amps” reading on the chart. If the step response
reaches the desired (10A) steady state fast enough then the PID is can be considered
tuned. If it is slow then increase integral gain. If the Torque and Flux Amps show noise
at high speed or motor produces noisy sound, then lower your proportional gain Kp.

	• Once FOC/current PID is tuned, FOC torque mode is ready to operate and FOC speed
mode can then be tuned. Note: It is important to know the value of Flux Amps the mo-
tor is designed to operate under. Flux Amps stay the same during entire FOC operation
unless field weakening is used.

Now motor Torque can be set to any desired value from 0 to plus or minus the value stored
in the Amps Limit configuration parameter, by sending a command of -1000 to +1000 using
the slider, analog input, pulse input, scripting, CAN or any other command mode.

Note that in Torque Mode, the Max Speed RPM configuration parameter is used to limit
the motor speed if the motor is not loaded and the desired torque is below the torque
that can actually be reached by the motor under the current load conditions. For example,
a torque command of 50A on an unloaded motor (that will never draw 50A) will cause the
voltage to increase to the maximum value, and therefore the motor to maximum speed,
unless the speed is limited by the Max RPM parameter. For more details see chapter
“Speed Limiting in FOC Torque Mode” below.

Note that, with bad tuning of FOC (flux and torque) PID, the motor might draw much high-
er current than expected. If so, try using lower bandwidth for FOC gains. For more details
see chapter “FOC Gains Determination & Tuning”, below.

FOC Gains Determination & Tuning
Good PI gains are important for the controller to quickly reach and stabilize the desired Id
and Iq current. A very good approximation of the gain values can be calculated from the
motor’s Resistance and Inductance as follows:

Torque FOC gains (iq current): consider the lock rotor test mode (check below figure)
when mainly iq current flows.

Torque FOC Kp : (Llr + Lls) x 2π x BW

Torque FOC Ki : (Rr + Rs) x 2π x BW

FIGURE 9-8. Locked rotor equivalent circuit

Field Oriented Control (FOC) mode Operation

	 Advanced Digital Motor Controller User Manual� 159

Flux FOC gains (id current): consider no-load test mode (check below figure) when mainly
id current flows.

Due to the high magnetizing inductance the Flux current PI loop shall run faster than
Torque current PI loop.

Flux FOC Kp gain: 2 x Kp, torque (Torque FOC gain)

Flux FOC Ki gain: 2 x Ki, torque (Torque FOC gain)

FIGURE 9-9. Locked rotor equivalent circuit

Bandwidth is in rad/sec and according to Nyquist criteria the current loop bandwidth can-
not be more than the half of the current loop sampling time. Most commonly the current
loop bandwidth is set to the 1/10-1/20 of the current loop sampling time. The current loop
sampling time is at 16 kHz. So if we choose as current loop bandwidth the 300Hz then:

1Hz = 2π rad/sec

So for 300Hz Bandwidth = 300*2π rad/sec = 1885

Usually even smaller bandwidth can be as effective as the 50Hz. It is better to start with
the smaller possible gains and then tune according to the behavior of the motor. Test in
FOC torque mode with caution.

Example calculation for 50Hz bandwidth, 48mOhm Phase resistance (Rr + Rs) and
152uH Phase Inductance (Llr + Lls).

Torque FOC gains:

Ki = 0.048 * 1885 = 90.48

Kp = 0.000152 * 1885 = 0.2865

Flux FOC gains:

Ki = 2 * Ki,torque = 180.96

Kp = 2 * Kp,torque = 0.573

Configuring FOC Speed Mode
To configure FOC Speed mode, configure first the FOC Torque mode as described in the
section above.

	• Set the controller to FOC Speed Mode

	• Tune speed loop PID in a similar manner as was done for FOC PID. Use the PID gains
found in the Motor Output, Closed Loop Speed Parameters menus (do not use the FOC
PID gains). It can be started with Kp term and introduce small Kd term. Once transient re-
sponse on the graph seems reasonable then Ki can be used to get rid of steady state error.

AC-induction-Motor-Operation

160	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Now motor Speed can be set to any desired value from 0 to plus or minus the value stored
in the Max RPM configuration parameter, by sending a command of -1000 to +1000 using
the slider, analog input, pulse input, scripting, CAN or any other command mode.

E.g. use the Roborun slider, or the console command

!G 1 800

to set motor RPM to 800 on channel 1 when MaxSpeed is set to 1000 RPM. Correspond-
ing if MaxSpeed is set to 2000 RPM, any value on the slider will give 2 times RPM.

Speed can be also set as an absolute RPM value using the S command from Serial, USB,
CAN or Microbasic.

Speed Limiting in FOC Torque Mode
AC Induction Controllers provide a way of smoothly limiting the speed in FOC torque
mode to prevent motor runaways. The method for limiting the speed is based on PID
speed over-ride control which provides very smooth motor output but requires PID tuning.

The speed loop PID tuning can either be done in “FOC torque mode” at the speed limit or
in “FOC Speed Mode” by looking at the response time.

•	 When in “FOC Torque Mode”, command some torque to the motor and cause the
motor to spin to the speed limit. Some low frequency ripple will be noticed in the
speed which should be minimized by increasing PID gains. Increase the PID gains
to a point where no ripple is seen.

•	 If in “FOC Speed Mode”, tune the speed PID gains by looking at the response time
of the motor. And then move to case 1) to check the ripple in the speed.

Induction Motor Parameters Calculation

The motor parameters of Induction Motors are crucial when the Field Oriented Control
Close loop torque/speed control is needed. More specifically, the rotor induced flux abso-
lute position is determined mathematically using known speed, voltage and current, and a
model representation of the motor’s main parameters shown in the figure below.

FIGURE 9-10. Electrical Representation of ACIM for motor characteristics calculation

These parameters include per phase rotor resistance ‘Rr’, rotor leakage inductance ‘Llr’,
mutual inductance ‘Lm’ and rotor leakage inductance ‘Llr’ (core losses Rc are neglected).
Furthermore, in order to set the FOC (Flux and Torque) PID gains, the Stator Resistance
(Rs) and Stator Inductance (Lls) needed, according to the method as described in chapter
“FOC Gains Tuning” at Section 8. The most common ways, to manually estimate induc-
tion motor parameters through the controller, are to test induction motor under no-load
and locked rotor conditions.

Induction Motor Parameters Calculation

	 Advanced Digital Motor Controller User Manual� 161

No load testing

The no-load test, like the open circuit test on a transformer, gives information about ex-
citing flux Id current, the magnetizing inductance Lm and rotational losses. The test is per-
formed by applying balanced rated voltage on the stator windings at the rated frequency.
The small power provided to the motor is due to core losses, friction and winding loses.
The motor will consume the necessary flux Id current in order to establish the appropriate
magnetic field. Motor will rotate at almost a synchronous speed, which makes slip nearly
zero (s≈0). Therefore, the motor equivalent circuit is expressed as follows:

FIGURE 9-11. Electrical Representation of ACIM during no load testing

Assuming that the Rs (Ω), Ls(H) are much lower than the magnetizing inductance Lm (H),
the following equation can be extracted:

				 L
V

2 f Im
s

s

�
� � (9.1)

where Vs (V) is the phase stator voltage applied (RMS value), fs (Hz) is the stator frequency
and I (A) is the RMS motor amps.

In order to implement the above mentioned no load test with RoboteQ induction motor
controllers, please follow these steps:

•	 Set the operating mode to “Volts per Hertz” mode. Encoder feedback action needed.
•	 Configure the Volt per Hertz setting according to motor nominal voltage (peak value

of stator voltage according to manufacturer) and frequency.
•	 Run the motor without load up to the maximum available voltage (Com-

mand=1000), utilizing small acceleration/deceleration value. Be sure that the con-
figured volt per hertz is correct, by checking the “Stator speed RPM” to be approx-
imately equal to manufacturer’s synchronous rated speed.

•	 Calculate the applied Vs by the following equation:

			 V
m V

1000 2 3
s

a dc�
� �

�
� (9.2)

where ma is the output PWM level (%1000) applied which is equal to Motor Power output
measurement in Roborun+ utility (-1000 to 1000 range) and Vdc is the battery volts (V). In
the considered no-load test the ma is 1000, therefore the applied voltage can be calculat-

ed as V
V

2 3
s

dc�
�

•	 Measure the motor RMS current from the utility (Motor Amps). Furthermore, the peak
amps value should be configured as “Rotor Flux current” in the configuration tab.

•	 Calculate the magnetizing inductance for the no load test according to equation
(9.1).

AC-induction-Motor-Operation

162	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example:

The following data have been given from the induction motor manufacturer:

P = 400 W (nominal power)

IN = 23 A (nominal stator current)

Vdc = 24 V (Input dc voltage at controller)

fs = 90 Hz (Nominal stator frequency)

ns = 2700 rpm (Synchronous speed)

p= 2 (pole pairs)

Therefore, the Volts per Hertz ratio introduced in configuration tab is
V
f

=
24
90

=0.267dc

s

Then the motor run volts per Hertz and the respective results from Roborun+ utility are
illustrated below.

FIGURE 9-12. No load testing monitoring

From the above results, it can been observed that the stator speed is close to the syn-
chronous speed (2700 rpm), while the slip is very small due to the no-load operation.

Therefore, by applying equation (9.1) the magnetizing inductance is:

L
V

2 f I

24.1
3 2

2 90 23.1
754uHm

s

s

= = =
� �

�
� � �

Furthermore, the rotor “Rotor Flux current” should be set in the configuration as (Motor
Amps) x 2 = 32.7 A

Induction Motor Parameters Calculation

	 Advanced Digital Motor Controller User Manual� 163

Locked rotor testing

The locked rotor test, like short circuit test on a transformer, provides the information
about leakage impedances and rotor resistance. Rotor is at the stand still, while low volt-
age is applied to stator windings up to rated current. Due to the fact that the magnetizing
inductance Lm is much higher that leakage phase inductances Lls, Llr, it can be assumed
that there is no current is floating to Lm parallel branch. Typically, leakage inductances Lls,
Llr should be around 2-10% of the magnetizing inductance Lm. Since there is no rotation
slip (rotor at standstill) s=1, which gives us the following equivalent circuit.

FIGURE 9-13. Electrical Representation of ACIM during locked rotor testing

Therefore, the phase Lls (H) , Llr (H), Rs (Ω), Rr (Ω) motor parameters are calculated as fol-
lows:

			 cos
P

V I
s

s

�� � �
� � (9.3)

				 Z=
V
I
s � (9.4)

			 R + R Z cos=s r � � � (9.5)

			 2 f L +L =Z sins ls lr� �� � � � (9.6)

				 R R=s r � (9.7)

				 L =Lls lr � (9.8)

where Ps (W) is the input phase motor power, Vs (V) is the phase stator voltage applied
(peak value), fs (Hz) is the stator frequency, cosφ is the power factor, I (A) is the motor
current (RMS value), Z (Ω) is the equivalent phase impedance at locked rotor test.

According to equations (9.7) and (9.8), it is assumed that rotor resistance is equal to
the stator resistance, as well as rotor leakage inductance is equal to stator leakage
inductance.

In order to implement the above mentioned locked rotor test with induction motor
controllers, please follow these steps:

•	 Set the operating mode to “Volts per Hertz” mode. Encoder feedback action
needed.

AC-induction-Motor-Operation

164	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

•	 Configure the Volt per Hertz setting five times lower than the motor’s nominal
voltage (peak value of stator voltage according to manufacturer) and frequency (1/5
of nominal V/f). The reason for configuring lower V/f ratio than in no-load test is to
appropriately weaken the induced field and reduce the produced torque at startup,
in order to be easier to lock the rotor for the test.

•	 Lock the rotor by appropriate tool/device and increase the command up reaching
the 80% of the rated motor current. If the produced torque is high and the rotor
cannot be locked, then reduce appropriately the Volt per Hertz at configuration and
repeat the test.

•	 Calculate the applied Vs by utilizing equation (9.2).
•	 Calculate the input phase motor power Ps by utilizing the following equation:

				 P =
V I

3s
dc dc× ×h

� (9.9)

where Vdc (V) is the battery dc volts, Idc (A) is the battery dc current, η is the controller ef-
ficiency (assume 0.95 efficiency for RoboteQ controllers). Battery volts and amps can be
measured from Roborun+ utility.

•	 Measure the Iq (A) current from the Roborun+ utility (FOC Torque Amps).
•	 Calculate the Lls, Llr , Rs, Rr motor parameters by applying the equations (9.3) - (9.8).

Example:

For the same induction motor at no load test example, the Volts per Hertz ratio is set 5
times lower than the nominal, that is 0.053. The respective results taken from Roborun+
utility are shown below:

FIGURE 9-14. Locked rotor testing monitoring

Therefore, the input phase motor power Ps is equal to

P =
V I

3
=

24.2 2.1 0.95
3

=16.1Ws
dc dc� � � ��

The power factor is cos
P

V I
16.1

151 24.2
1000 2 3

18.4
0.59s

s

�� � �
�

�
�

�
�

� , while the equivalent

phase impedance is Z = 0.081 Ω according to equation (9.4).

Induction Motor Parameters Calculation

	 Advanced Digital Motor Controller User Manual� 165

Therefore, the motor stator and rotor resistances are Rs = Rr = 24 mΩ according to equa-
tions (9.5) and (9.7) and the leakage inductances according to equation (9.6) are:

L +L
Z sin

2 f
0.081x0.81

2
2067 2

60

152uHls lr

s

� � � �
�

� �
�

�
�

� �

It is noted that the synchronous frequency in locked rotor test is different than the syn-
chronous frequency in no-load test. Finally, the Lls = Llr = 76 uH according to equation
(9.8).

Optimal slip calculation

After estimating Lm, Lls, Llr , Rs, Rr motor parameters from no-load and locked-rotor tests,
the optimal slip where the motor produces the maximum torque smaxT can be estimated
as follows:

			 s
R

2 fLmaxT
r

s m

�
�

� (9.10)

Next, in order to apply at configuration tab the optimal slip in Hz, the following transforma-
tion needed:

			 s=s fmaxT s× � (9.11)

Example:

For the calculated Lm = 754 uH, motor leakage inductances Lls = Llr = 76 uH and resistance
Rs = Rr = 24 mΩ, the optimal slip is calculated equal to s = 5.1 Hz at rated motor speed.

After making the following simplification out of (9.10) and (9.11):

s �
� � �

� �� �
� �

R
f L

f s
R

L
r

s m
s

r

m2 2� �

Modes Description

	 Advanced Digital Motor Controller User Manual� 167

SECTION 10	 Closed Loop Speed and
Speed-Position Modes

This section discusses the controller’s Closed Loop Speed modes.

Modes Description
Close loop speed modes ensure that the motor(s) will run at a precisely desired speed. If
the speed changes because of changes in load, the controller automatically compensates
the output voltage so that the motor maintains a constant speed. Two closed loop speed
modes are available:

Closed Loop Speed Mode
This mode is the traditional closed loop technique where speed is measured with a speed
sensor. The speed is compared to the desired speed and the speed PID control loop out-
put provides the reference current (if FOC torque gains are set) or voltage commands (if
the FOC torque gains are zero), in order to reach and maintain that speed. The internal cur-
rent control is described in the Field Oriented Control (FOC) operation chapter.

FIGURE 10-1. Closed Loop Speed Mode

Closed Loop Speed Position Control
In this mode, the controller computes the position at which the motor must be at every
1ms. Then a PID compares that expected position with the current position and applies
the necessary reference speed (if speed and FOC torque gains are set) or voltage (if the
speed and FOC torque gains are zero) command in order for the motor to reach that posi-
tion. This mode is especially effective for accurate control at very slow speeds.

Closed Loop Speed Mode

168	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

FIGURE 10-2. Closed Loop Speed Position Mode

The controller incorporates a full-featured Proportional, Integral, Derivative (PID) control
algorithm for quick and stable speed control.

The closed loop speed mode and all its tuning parameters may be selected individually for
each motor channel.

Motor Sensors

The controller may be used with the following kinds of sensors:

•	 Analog Tachometers
•	 Either of the supported sensors’

Digital Optical Encoders may be used to capture accurate motor speed. Analog tachome-
ters are another technique for sensing speed. See “Connecting Tachometo Analog Inputs”
on page 52.

Tachometer or Encoder Mounting
Proper mounting of the speed sensor is critical for an effective and accurate speed mode oper-
ation. Figure 10-1 shows a typical motor and tachometer or encoder assembly. It is always pref-
erable to have the encoder connected to the motor shaft rather than at the output of a gearbox.
If the encoder must be mounted after a gear box considers the effect of the gear backlash. A
higher count encoder will typically be required to compensate for the lower rotation speed.

Position Sensor

Gear box

Position Feedback

Speed feedback

Analog Tachometer
or Optical Encoder

FIGURE 10-3. Motor and speed sensor assembly needed for Close Loop Speed mode

Tachometer wiring

	 Advanced Digital Motor Controller User Manual� 169

Tachometer wiring
The tachometer must be wired so that it creates a voltage at the controller’s analog input
that is proportional to rotation speed: 0V at full reverse, +5V at full forward, and 0 when
stopped.

Connecting the tachometer to the controller is as simple as shown in the diagram below.

20kOhm
33kOhm

1kOhm Max Speed Adjust
10kOhm pot

Zero Adjust
100 Ohm pot

1kOhm

Internal Resistors
and Converter

5V Out

Ground

A/DTach
Ana In

FIGURE 10-4. Tachometer wiring diagram

Hall Sensors as Speed Sensors
The Hall Sensors and most other types of rotor position sensors that are used to switch
power around the motor windings, can also used to measure speed and distance traveled.

Speed is evaluated by measuring the time between the transition of the Hall Sensors. A
32 bit up/down counter is also updated at each Hall Sensor transition.

Speed information picked up from the Hall Sensors can be used for closed loop speed op-
eration without any additional hardware on both sinusoidal and trapezoidal commutation.
Likewise, the position counter that is updated at every Hall transition can also be used to
operate the motor in Speed Position mode.

Speed Sensor and Motor Polarity
The sensor’s polarity (i.e. which rotation direction produces positive or negative speed in-
formation) is related to the motor’s rotation speed and the direction the motor turns when
power is applied to it.

In the Closed Loop Speed mode, the controller compares the actual speed, as measured
by the sensor, to the desired speed. If the motor is not at the desired speed and direction,
the controller will apply power to the motor so that it turns faster or slower, until reached.

Closed Loop Speed Mode

170	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Important Warning

The speed sensor polarity must be such that a positive voltage is generated to the
controller’s input when the motor is rotating in the forward direction. If the polarity
is inverted, this will cause the motor to run away to the maximum speed as soon as
the controller is powered.

Determining the right polarity is best done during the motor sensor setup. The result can
be validated experimentally using the Roborun utility (see “Roborun+ Utility User Manu-
al”) and following these steps:

1.	 Configure the controller in Open Loop Mode using the PC utility. This will cause the
motor to run in Open Loop for now.

2.	 Configure the sensor you plan to use as speed feedback. If an analog tachometer is
used, map the analog channel on which it is connected as “Feedback” for the select-
ed motor channel. If an encoder is used, configure the encoder channel with the en-
coder’s Pulses Per Revolution value. On the brushless motor, if the rotor sensor (Hall,
Sin/Cos, ..) sensors are used, configure the correct number of motor pole pairs.

3.	 Click on the Run tab of the PC utility. Configure the Chart recorder to display the
speed information if an encoder is used. Display Feedback if an analog sensor is
used.

4.	 Verify that the motor sliders are in the “0” (Stop) position.

5.	 If a tachometer is used, verify that the reported feedback value read is 0 when the
motors are stopped. If not, adjust the Analog Center parameter.

6.	 Move the cursor of the desired motor to the right so that the motor starts rotating,
and verify that a positive speed is reported. Move the cursor to the left and verify that
a negative speed is reported.

7.	 If the reported speed polarity is the same as the applied command, the wiring is cor-
rect.

8.	 If the tachometer polarity is opposite of the command. If an encoder is used, swap its
ChA and ChB outputs. Alternatively, swap the motor leads if using a brushed DC motor
only. The speed polarity can also be inverted by entering a negative number of encoder
PPR. On brushless motors, entering a negative number of poles will invert the speed
measured by the Hall, SinCos, or Resolver sensor. If using SSI sensor, the speed polari-
ty can be inverted by entering a negative number of SSI sensor resolution.

9.	 Set the controller operating mode to Closed Loop Speed mode using the Roborun
utility.

10.	 Move the cursor and verify that speed stabilizes at the desired value. If speed is un-
stable, tune the PID values.

Important Warning

It is critically important that the tachometer or encoder wiring be extremely robust.
If the speed sensor reports an erroneous speed or no speed at all, the controller will
consider that the motor has not reached the desired speed value and will gradually
increase the applied power to the motor until the closed loop error is triggered and
the motor is then stopped.

Controlling Speed in Closed Loop

	 Advanced Digital Motor Controller User Manual� 171

Controlling Speed in Closed Loop
When using either of the supported sensors’ feedback, the controller will measure and
report speed as the motor’s actual RPM value.

When using analog or pulse as input command, the command value will range from 0 to
+1000 and 0 to -1000. In order for the max command to cause the motor to reach the de-
sired actual max RPM, an additional parameter must be entered in the configuration. The
Max RPM parameter is the speed that will be reported as 1000 when reading the speed
in relative mode. Max RPM is also the speed the controller will attempt to reach when a
max command of 1000 is applied.

When sending a speed command via serial, network or scripting, the command may be
sent as a relative speed (0 to +/-1000) or actual RPM value.

PID Description
The controller performs both Closed Loop Speed modes using a full featured Proportional,
Integral and Derivative (PID) algorithm. This technique has a long history of usage in con-
trol systems and works on performing adjustments to the Power Output based on the dif-
ference measured between the desired speed or position (set by the user) and the actual
speed or position (captured by the sensor on the motor).

Figure 9-3 shows a representation of the PID algorithm. Every 1 millisecond, the controller
measures the actual motor speed or position and subtracts it from the desired speed or
position to compute the error.

The resulting error value is then multiplied by a user selectable Proportional Gain. The
resulting value becomes one of the components used to command the motor. The effect
of this part of the algorithm is to regulate current (if torque FOC gains are set) or voltage
(if torque FOC gains are zero) of the motor proportionally with the difference between
the current and desired speed or position: when far apart, high power is applied, with the
power being gradually reduced as the motor moves to the desired speed or destination.

A higher Proportional Gain will cause the algorithm to apply a higher level of power for a
given measured error thus making the motor react more quickly to changes in commands
and/or motor load.

The Derivative component of the algorithm computes the changes to the error from one
1 ms time period to the next. This change will be a relatively large number every time
an abrupt change occurs on the desired speed value or the measured speed value. The
value of that change is then multiplied by a user selectable Derivative Gain and added to
the output. The effect of this part of the algorithm is to give a boost of extra power when
starting the motor due to changes to the desired speed or position value. The Derivative
component will also help dampen any overshoot and oscillation.

The Integral component of the algorithm performs a sum of the error over time. In Speed
mode, this component helps the controller reach and maintain the exact desired speed
when the error is reaching zero (i.e. measured speed is near to, or at the desired value). In
Speed Position mode, the Integral parameter can help maintain a slightly tighter difference
between the desired and actual position, but makes no significant difference and can be
omitted altogether.

Closed Loop Speed Mode

172	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Gain

Propor tional
Gain

Output
(Reference Current
or Voltage commands)Measured Speed or Position

-

x

Σ

xdE
dt

Integral
Gain

xdE
dt

E= Error

Sensor

Desired Speed
or Position

Integrator
Limit

Derivative

 FIGURE 10-5. PID algorithm used in close loop speed modes

PID tuning in Closed Loop Speed Mode
As discussed above, three parameters - Speed Proportional Gain, Speed Integral Gain, and
Speed Derivative Gain - can be adjusted to tune the Closed Loop Speed control algorithm.
The ultimate goal in a well tuned PID is a motor that reaches the desired speed quickly
without overshoot or oscillation. The speed mode PI gains are essentially affected from
electric motor and mechanical system characteristics, such as torque constant, inertia, ro-
tating friction coefficient, load torque.

The speed loop gains can be automatically, as well as manually, regulated from the Motor
Sensor and Tuning setup wizard supported in Roborun+ v3.0 utility (see Roborun+ Utility
User Manual for more details).

The Roborun PC utility makes this experimentation easy by providing one screen for
changing the Proportional, Integral and Derivative gains and another screen for running
and monitoring the motor. First, configure the torque loop gains properly and run the
motor with the preset values. Then experiment with different values until a satisfactory
behavior is found.

In Speed Mode, the Integral component of the PID is of high importance, eliminating the
loop error. The Proportional and Derivative components will help improve the response
time and loop stability.

Try initially to only use a small value of P and I with no D:

P = 0 .1
I = 0.2
D = 0

These values practically always work, but they may cause the motor to be slowly reaching
the desired speed. Increase the P gain to improve responsiveness and I gain to eliminate
loop error, but keeping them below the level at which the motor begins to oscillate or per-
form overshoots/undershoots during speed transitions.

PID Tuning in Speed Position Mode

	 Advanced Digital Motor Controller User Manual� 173

In the case where the load moved by the motor is not fixed, tune the PID with the mini-
mum expected load and tune it again with the maximum expected load. Then try to find
values that will work in both conditions. If the disparity between minimal and maximal
possible loads is large, it may not be possible to find satisfactory tuning values. In this
case, consider changing the PID gains on the fly during motor operation with serial/CAN
commands of with a MicroBasic script.

In slow systems, use the integrator limit parameter to prevent the integrator to reach sat-
uration prematurely and create overshoots. Beware to set speeds that can physically be
reached by the motor under load. If the motor is not physically able, there will be a loop
error, which if it becomes too large, will cause a fault to be detected and the motor to be
stopped.

PID Tuning in Speed Position Mode

As discussed, in Closed Loop Speed Position mode, every millisecond, the controller com-
putes a successive desired position. The PID then works to make the motor follow the
computed trajectory. This mode works much better than the regular Closed Loop Speed
mode when the motor must operate at very low speed. When the motor is stopped, it
will maintain its position even if pulled, as for example on a robot stopped downhill.

The PID therefore must be tuned for position mode. In position mode (the Position Gains
are used), most of the work is done by the proportional gain. It acts essentially as an
imaginary rubber belt between the controller’s internal destination counter and the motor:
the higher the difference, the more the belt is stretched, and the stronger the motor will
turn. Once the imaginary belt has stiffened the motor will run at the desired speed.

In speed position mode, the position loop P gain can be calculated through the following
equation, utilizing the zero-pole cancelation method, considering sensor resolution also as
the PI control is applied in absolute position counts:

Kp=2pfBW 3
60

Sensor resolution

where:

Kp: Position loop P gain.

fBW: Bandwidth of the position control loop (Hz)

Sensor resolution: The utilized sensor resolution for one full mechanical revolution. Below
is the sensor resolution for each supported feedback type:

Encoder: Pulses per revolution x 4

SPI/SSI: Sensor counts resolution

Hall: Number of pole pairs x 6

Sin/Cos: 16384

Resolver: 16384

Closed Loop Speed Mode

174	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example

For an encoder with 4096 pulses/rev and 1 Hz bandwidth selected the proportional posi-
tion gain should be:

Kp = (2 x 3.141 x 1 x 60)/(4096 x 4) = 0.023

It is noted that the speed gains should be configured first, in order to enable the internal
speed loop and operate in cascaded speed position mode. The speed loop gains can be
automatically, as well as manually, regulated from the Motor Sensor and Tuning setup
wizard supported in Roborun+ v3.0 utility (see Roborun+ Utility User Manual for more
details).

Recommended initial bandwidth for position control loop is 0.5Hz, considering also that
the typical speed loop range is 2-5 Hz.

With the controller configured in Speed Position mode and the motor stopped, do a first
check of the PID’s stiffness by attempting to rotate the motor by hand. It should feel
increasingly hard to rotate away from the rest position. With a higher P gain, it will be-
come harder to move than lower gains. As a rule of thumb, on a mobile robot, use a gain
that makes it very hard to move the wheel more than a quarter turn away from the rest
position. Test then by applying a speed command and verifying the motor runs smoothly
under all load conditions.

The I and D gain can generally be omitted in Speed Position mode.

Beware to set speeds that can physically be reached by the motor under load. The Closed
Loop Speed Position mode relies on the fact that the motor will actually be able to follow
the computed trajectory. If the motor is not able, the controller will pause updating the
destination counter until the motor caught up. This will result in inaccurate speed and can
be a problem in mobile robot applications depending on precise control of their left and
right side motor.

Modes Description

	 Advanced Digital Motor Controller User Manual� 175

SECTION 11	 Closed Loop
Relative and
Tracking Position
Modes

This section describes the controller’s Position Relative and Position Tracking modes, how
to wire the motor and position sensor assembly and how to tune and operate the control-
ler in these modes.

Modes Description
In these two position modes, the axle of a geared-down motor is coupled to a position
sensor that is used to compare the angular position of the axle versus a desired position.
The controller will move the motor so that it reaches this position.

This feature makes it possible to build ultra-high torque “jumbo servos” that can be used
to drive steering columns, robotic arms, life-size models and other heavy loads.

The two position modes are similar and differ as follows:

Position Relative Mode
The controller accepts a command ranging from -1000 to +1000, from serial/USB, analog
joystick, pulse input or Network command. The controller reads a position feedback sensor
and converts the signal into a -1000 to +1000 feedback value at the sensor’s min and max
range respectively. The controller then moves the motor so that the feedback matches the
command, using a controlled acceleration, set velocity, and controlled deceleration. This
mode requires several settings to be configured properly but results in very smoothly con-
trolled motion.

Position Tracking Mode
This mode is identical to the Position Relative mode in the way that commands and feed-
back are evaluated. However, the controller will move the motor simply using a PID com-
paring the command and feedback, without controlled acceleration and as fast as possible.
This mode requires fewer settings but often results in a motion that is not as smooth and
harder to control overshoots.

Closed Loop Relative and Tracking Position Modes

176	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Selecting the Position Modes
The two position modes are selected by changing the Motor Control parameter to Closed
Loop Position. This can be done using the corresponding menu in the Power Output tree
in the Roborun utility. It can also be done using the associated serial (RS232/RS485/TCP/
USB) command. See “MMOD - Operating Mode” on page 358. The position mode can be
set independently for each channel.

Position Feedback Sensor Selection
The controller may be used with the following kinds of sensors:

•	 Potentiometers
•	 Hall effect angular sensors
•	 Supported Sensors (Hall sensors, Optical Encoders, SSI, SinCos, Resolver).

The first two are used to generate an analog voltage ranging from 0V to 5V depending on
their position. They will report an absolute position information at all times.

Modern position Hall sensors output a digital pulse of the variable duty cycle. These
sensors provide an absolute position value with high precision (up to 12-bit) and excellent
noise immunity. PWM output sensors are directly readable by the controller and therefore
are a recommended choice.

Optical encoders report incremental changes from a reference which is their initial
position when the controller is powered up or reset. Before they can be used for reporting
position, the motors must be moved in open loop mode until a home switch is detected
and resets the counter. Encoders offer the greatest positional accuracy possible.

Sensor Mounting
Proper mounting of the sensor is critical for an effective and accurate position mode oper-
ation. Figure 11-1 shows a typical motor, gear box, and sensor assembly.

Position Sensor

Gear box

Position Feedback

FIGURE 11-1. Typical motor/Potentiometer/assembly in Position Mode

The sensor is composed of two parts:

•	 a body which must be physically attached to a non-moving part of the motor as-
sembly or the robot chassis, and

•	 an axle which must be physically connected to the rotating part of the motor you
wish to position.

A gear box is necessary to greatly increase the torque of the assembly. It is also neces-
sary to slow down the motion so that the controller has the time to perform the position
control algorithm. If the gearing ratio is too high, however, the positioning mode will be
very sluggish.

Feedback Sensor Range Setting

	 Advanced Digital Motor Controller User Manual� 177

A good ratio should be such that the output shaft rotates at 1 to 10 rotations per second
(60 to 600 RPM) when the motor is at full speed.

The mechanical coupling between the motor and the sensor must be as tight as possible.
If the gear box is loose, the positioning will not be accurate and will be unstable, potential-
ly causing the motor to oscillate.

Some sensors, such as potentiometers, have a limited rotation range of typically 270
degrees (3/4 of a turn), which will in turn limit the mechanical motion of the motor/poten-
tiometer assembly. Consider using a multi-turn potentiometer as long as it is mounted
in a manner that will allow it to turn throughout much of its range, when the mechanical
assembly travels from the minimum to maximum position. When using encoders, best
results are achieved when the encoder is mounted directly on the motor shaft.

Feedback Sensor Range Setting
Regardless of the type of sensor used, feedback sensor range is scaled to a -1000 to
+1000 value so that it can be compared with the -1000 to +1000 command range.

On analog and pulse sensors, the scaling is done using the min/max/center configuration
parameters.

When encoders are used for feedback, the encoder count is also converted into a -1000 to
+1000 range. In the encoder case, the scaling uses the Encoder min and max limit param-
eters. See “Serial (RS232/ RS485/USB/TCP) Operation” in Section 14 for details on these
configuration parameters. Beware that encoder counters produce incremental values. The
encoder counters must be set using a homing procedure before they can be used as posi-
tion feedback sensors. A typical homing process involves switching the operating mode to
Open Loop or Closed Loop Speed and moving the motor in one direction until the homing
condition is met (for example, detecting the encoder’s homing pulse). Afterward, the en-
coder counter should be set to the desired value. For more information on accessing the
encoder counter, refer to the ‘C’ runtime command.

Important Notice
Potentiometers are mechanical devices subject to wear. Use better quality potenti-
ometers and make sure that they are protected from the elements. Consider using
a solid state hall position sensor in the most critical applications. Optical encoders
may also be used, but require a homing procedure to be used in order to determine
the zero position.

Important Warning
If there is a polarity mismatch, the motor will turn in the wrong direction and the
position will never be reached. The motor will turn until the Closed Loop Error de-
tection is triggered. The motor will then stop until the error disappears, the control-
ler is set to Open Loop, or the controller is reset.

Closed Loop Relative and Tracking Position Modes

178	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Determining the right polarity is best done during the motor sensor setup. The result can
be validated experimentally using the Roborun utility (see “Roborun+ Utility User Manu-
al”) and following these steps:

1.	 Configure the controller in Open Loop Speed mode.
2.	 Configure the position sensor input channel as position feedback for the desired mo-

tor channel.
3.	 Click on the Run tab.
4.	 Enable the Feedback channel in the chart recorder.
5.	 Move the slider slowly in the positive direction and verify that the Feedback in the chart

increases in value. If the Feedback value decreases, then the sensor is backward and
you should either invert using configuration commands, invert the sensor physically, it
or swap the motor wires so that the motor turns in the opposite direction.

6.	 Move the sensor off the center position and observe the motor’s direction of rotation.
7.	 Go to the max position and verify that the feedback value reaches 1000 a little before

the end of the physical travel. Modify the min and max limits for the sensor input if
needed.

8.	 Repeat the steps in the opposite direction and verify that the -1000 is reached a little
before the end of the physical travel limit.

Important Safety Warning
Never apply a command that is lower than the sensor’s minimum output value or
higher than the sensor’s maximum output value as the motor would turn forever
trying to reach a position it cannot. Configure the Min/Max parameter for the sen-
sor input so that a value of -1000 to +1000 is produced at both ends of the sensor
travel.

Adding Safety Limit Switches
The Position mode depends on the position sensor providing accurate position informa-
tion. If the sensor is damaged or one of its wires is cut, the motor may spin continuously
in an attempt to reach a fictitious position. In many applications, this may lead to serious
mechanical damage.

To limit the risk of such breakage, it is recommended to add limit switches that will
cause the motor to stop if unsafe positions have been reached independently of the
sensor reading. Any of the controller’s digital inputs can be used as a limit switch for any
motor channel.

Using Current Trigger as Protection
The controller can be configured to trigger an action when the current reaches a user con-
figurable threshold for more than a set amount of time. This feature can be used to detect
that a motor has reached a mechanical stop and is no longer turning. The triggered action
can be an emergency stop or a simulated limit switch.

Operating in Closed Loop Relative Position Mode
This position algorithm allows you to move the motor from an initial position to the desired

Operating in Closed Loop Relative Position Mode

	 Advanced Digital Motor Controller User Manual� 179

position. The motor starts with a controlled acceleration, reaches the desired velocity,
and decelerates at a controlled rate to stop precisely at the end position. The graph below
shows the speed and position vs. time during a position move.

Position

End
Position

Start
Position

Position
Mode
Velocity

Acceleration Deceleration

Speed Time

Time

FIGURE 11-2. Position Mode Functionality

When turning the controller on, the default acceleration, deceleration and velocity are pa-
rameters retrieved from the configuration EEPROM. In most applications, these parame-
ters can be left unchanged and only change in commands used to control the change from
one position to the other. In more sophisticated systems, the acceleration, deceleration
and velocity can be changed on the fly using Serial/USB commands or from within a Mi-
croBasic script.

When using Encoders as feedback sensors, the controller can accurately measure the
speed and the number of motor turns that have been performed at any point in time. The
complete positioning algorithm can be performed with the parameters described above.

When using analog or pulse sensors as feedback, the system does not have a direct way
to measure speed or number of turns. It is therefore necessary to configure an additional
parameter in the controller which determines the number of motor turns between the
point the feedback sensor gives the minimum feedback value (-1000) to the maximum
feedback value (+1000).

In the Closed Loop Relative Position mode, the controller will compute the position at
which the motor is expected to be at every millisecond in order to follow the desired ac-
celeration and velocity profile. This computed position becomes the setpoint that is com-
pared with the feedback sensor and a correction is applied at every millisecond.

Closed Loop Relative and Tracking Position Modes

180	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

For troubleshooting, the computed position can be monitored in real time by enabling the
Tracking channel in the PC utility’s chart recorder.

Beware not to use accelerations and max velocity that are beyond the motor’s physical
reach at full load. This would result in a loop error which will stop the system if growing
too large.

Operating in Closed Loop Tracking Mode
In this mode, the controller makes no effort to compute a smooth, millisecond by milli-
second position trajectory. Instead, the current feedback position is periodically compared
with the requested destination and power is applied to the motor using these two values
in a PID control loop.

This mode will work best if changes in the commands are smooth and not much faster
than what the motor can physically follow.

Position Mode Relative Control Loop Description
The controller performs the Relative Position mode using a full featured Proportional, In-
tegral and Derivative (PID) algorithm (using the Position Gains). This technique has a long
history of usage in control systems and works on performing adjustments to the speed
command based on the difference measured between the desired position (set by the
user) and the actual position (captured by the position sensor).

Figure 10-4 shows a representation of the PID algorithm. Every 1 millisecond, the control-
ler measures the actual motor position and subtracts it from the desired position to com-
pute the position error.

The resulting error value is then multiplied by a user selectable Proportional Gain. The result-
ing value becomes one of the components used to command the motor. The effect of this
part of the algorithm is to calculate the speed command to the motor control that is pro-
portional with the distance between the current and desired positions: when far apart, high
speed command is generated, with the power being gradually reduced and stopped as the
motor moves to the final position. The Proportional feedback is the most important compo-
nent of the PID in Position mode.

If the PID of the speed PI controller is not configured, then the output of the position PID
corresponds to the applied output voltage (power). In this case, it is highly recommended
to configure only the flux FOC gains and set the torque FOC gains to zero.

A higher Proportional Gain will cause the algorithm to apply a higher level of speed/
voltage commands for a given measured error, thus making the motor move quicker. Be-
cause of inertia, however, a faster moving motor will have more difficulty stopping when
it reaches its desired position. It will therefore overshoot and possibly oscillate around
that end position.

PID tuning in Position Relative and Tracking Position Modes

	 Advanced Digital Motor Controller User Manual� 181

Gain

Propor tional
Gain

Speed or
Power (Voltage)
commandMeasured Position

-

x

Σ

xdE
dt

Integral
Gain

xdE
dt

E= Error

Sensor

Desired Position

Integrator
Limit

Derivative

FIGURE 11-3. PID algorithm used in Position Mode

The Derivative component of the algorithm computes the changes to the error from one
ms time period to the next. This change will be a relatively large number every time an
abrupt change occurs on the desired position value or the measured position value. The
value of that change is then multiplied by a user-selectable Derivative Gain and added to
the output. The effect of this part of the algorithm is to give a boost of extra power when
starting the motor due to changes to the desired position value. The Derivative component
will also help dampen any overshoot and oscillation.

The Integral component of the algorithm performs a sum of the error over time. In the
position mode, this component helps the controller reach and maintain the exact desired
position when the error would otherwise be too small to energize the motor using the
Proportional component alone. Only a very small amount of Integral Gain is typically re-
quired in this mode.

In systems where the motor may take a long time to physically move to the desired
position, the integrator value may increase significantly causing then difficulties to stop
without overshoot. The Integrator Limit parameter will prevent that value from becoming
unnecessarily large.

PID tuning in Position Relative and Tracking Position Modes
As discussed above, three parameters - Position Proportional Gain, Position Integral Gain
and Position Derivative Gain - can be adjusted to tune the position control algorithm. The
ultimate goal in a well tuned PID is a motor that reaches the desired position quickly with-
out overshoot or oscillation.

In closed loop position relative and tracking position modes, the position loop P gain can
be calculated through the following equation, utilizing the zero-pole cancelation method,
considering sensor resolution, as the PI control is applied in absolute position counts and
position feedback normalization process from -1000 to +1000:

Closed Loop Relative and Tracking Position Modes

182	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Kp=2pfBW 3
60

Sensor resolution
 3

MaxLimit – MinLimit

2000

where:

Kp : Position loop P gain.

fBW : Bandwidth of the position control loop (Hz)

Sensor resolution: The utilized sensor resolution for one full mechanical revolution. Be-
low is the sensor resolution for each supported feedback type:

Encoder: Pulses per revolution x 4

SPI/SSI: Sensor counts resolution

Hall: Number of pole pairs x 6

Sin/Cos: 16384

Resolver: 16384

Example

For an encoder with 4096 pulses/rev, 20000 counts max limit, -20000 counts min limit and
1 Hz bandwidth selected the proportional position gain should be:

Kp = (2 x 3.141 x 1 x 60)/(4096 x 4) x (20000 + 20000)/2000 = 0.46

It is noted that the speed gains should be configured first, in order to enable the internal
speed loop and operate in cascaded speed position mode. The speed loop gains can be
automatically, as well as manually, regulated from the Motor Sensor and Tuning setup
wizard supported in Roborun+ v3.0 utility (see Roborun+ Utility User Manual for more
details).

Recommended initial bandwidth for position control loop is 0.5Hz, considering also that
the typical speed loop range is 2-5 Hz.

Because many mechanical parameters such as motor power, gear ratio, load and iner-
tia are difficult to model, tuning the PID needs also a manual validation process that
takes experimentation.

The Roborun PC utility makes this experimentation easy by providing one screen for
changing the Proportional, Integral and Derivative gains and another screen for running
and monitoring the motor.

PID Tuning Differences between Position Relative and Position Tracking

	 Advanced Digital Motor Controller User Manual� 183

When tuning the motor, first start with the Integral and Derivative Gains at zero, increas-
ing the Proportional Gain until the motor overshoots and oscillates. Typically the Integral
and Derivative gains should be equal to zero, especially when utilizing cascaded position
mode including the speed and torque control loops.

To set the Proportional Gain, which is the most important parameter, use the Roborun util-
ity to observe the three following values:

•	 Command Value
•	 Actual Position
•	 Actual Speed

With the Integral Gain set to 0, the PID output should be:

PID Output = (Command Value - Actual Position) * Proportional Gain

The PID output can be the speed command or the applied power (voltage), depending on
whether the speed gains are set or zeroed respectively. Experiment first with the motor
electrically or mechanically disconnected and verify that the controller is measuring the
correct position and is applying the expected amount of power (voltage) to the motor de-
pending on the command given.

Verify that when the Command Value equals the Actual Position, the Applied Power (Volt-
age) equals to zero. Note that the Applied Power (Voltage) value is shown without the sign
in the PC utility.

In the case where the load moved by the motor is not fixed, the PID must be tuned with
the minimum expected load and tuned again with the maximum expected load. Then try
to find values that will work in both conditions. If the disparity between minimal and maxi-
mal possible loads is large, it may not be possible to find satisfactory tuning values.

PID Tuning Differences between Position Relative and
Position Tracking

The PID works the same way in both modes in that the desired position is compared to
the actually measured position.

In the Closed Loop Relative mode, the desired position is updated every ms and so the
PID deal with small differences between the two values.

In the Closed Loop Tracking mode, the desired position is changed whenever the com-
mand is changed by the user according to the acceleration and deceleration values config-
ured.

Tuning for both modes requires the same steps. However, the position loop bandwidth
expected may be different from one mode to the other.

Mode description

	 Advanced Digital Motor Controller User Manual� 185

SECTION 12	 Closed Loop
Count Position
Mode

In the Closed Loop Position mode, the controller can move a motor a precise number of
counts, using a predefined acceleration, constant velocity, and deceleration. This mode
requires that an encoder be mounted on the motor.

Mode description
The desired position is given in the number of counts. Using acceleration, deceleration
and top velocity, the controller computes the position at which the motor is expected to
be at every one millisecond interval. A PID then computes the speed to give to the motor
in order to maintain that position. A comparator looks at the desired position and the com-
puted current position and issues a Destination Reached flag. The figure below shows a
representation of this mode.

FIGURE 12-1 Closed Loop Position mode

Sensor Types and Mounting
In position mode, best results are achieved with encoders directly mounted on the motor
shaft.

It is not advised to mount encoders at the output of a geared motor as the gear box often
introduces backlash. If the encoder must be mounted at the output, then it must typically
have a higher count to compensate the lower speed rotation at that location.

Closed Loop Count Position Mode

186	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Quadrature encoders typically provide the highest resolution since they can be ordered
with a line resolution of several hundred or thousands of counts per revolution. Hall en-
coders built in brushless motors give a relatively low, but often adequate count of 6* Num-
berOfPolePairs per mechanical resolution. SSI digital sensors give a pole resolution equal
to their SSI sensor resolution. Other brushless rotor sensors, such as sin/cos or resolver
sensors will give up to 512 counts per pole and can therefore be used instead of encoders.

Encoder Home reference
Beware that encoders do not give an absolute position information. It is therefore neces-
sary to perform a search of the zero reference position at least once after every power up.
This is typically achieved by moving the motor up to a limit switch and loading the counter
with a fixed value at that location. A home search sequence can easily be implemented
using a MicroBasic script. The search and counter loading must be done while the motor
is operated in an open loop.

SSI Sensor Home reference
When SSI sensors are used as relative encoders, it is as well necessary to perform a search
of the zero reference position, as stated above. When SSI sensors are used as absolute en-
coders (Absolute Feedback), Home reference is used as an offset to the SSI Counter.

Important Warning

Changing the counter with value while the motor is operated in a closed loop can cause
violent and dangerous jumps. Always revert to open loop to change the counter value.

Preparing and Switching to Closed Loop
To enter this mode you will first need to configure the encoder so that it is used as feed-
back for motor1, and feedback for motor2 on the other encoder in a dual motor system.
On brushless motors, selecting “Other” in Closed Loop Feedback Sensor, the encoder or
the SSI sensor, if either present and properly configured, will be used as feedback. Select-
ing “Internal Sensor”, Hall, sin/cos or resolver sensor, depending on which is configured,
will be used as feedback.

Use the PC Utility to set the default acceleration, deceleration, position mode velocity
as long as maximum and minimum speed in the motor menu. These values can then be
changed on the fly if needed.

While in Open Loop, enable the Speed channel in the Roborun Chart Recorder. Move the
slider in the positive direction and verify that the measured speed polarity is also positive.
If a negative speed is reported, swap the two encoder wires to change the measured po-
larity, or swap the motor leads to make the motor spin in the opposite direction.

Then use the PC Utility to select the Closed Loop Position Mode. After saving to the con-
troller, the motor will operate in Closed Loop and will attempt to go to the 0 counter posi-
tion. Beware therefore that the motor has not already turned before switching to Closed
Loop. Reset the counter if needed prior to closing the loop.

Count Position Commands

	 Advanced Digital Motor Controller User Manual� 187

Count Position Commands
Moving the motor is done using a set of simple commands.

To go to an absolute encoder position value, use the !P command

To go to a relative encoder position count that is relative to the current position, use the
!PR command.

The Acceleration, Deceleration and Velocity are fixed parameters that can be changed us-
ing the ^MAC, ^MDEC and ^MVEL configuration settings. These can also be changed on
the fly, any time using the !AC and !DC commands.

The velocity can also be changed at any time using the !S command:

New position destination command can be issued at any time. If the previous destination
is not reached while the new is sent, the motor will move to the new destination. If this
causes a change of direction, the motor will do the change using the current acceleration
and deceleration settings. See the Commands Reference section for details on all these
commands

Position Command Chaining
It is possible to chain position commands in order to create seamless motion to a new
position after an initial position is reached. To do this, the controller can store the next goto
position with, optionally, a new set of acceleration, deceleration and velocity values.

The commands that set the “next” move are identical to these discussed in the previous
section, with the addition of an “X” at the end. The full command list is:

!PX nn mm	 Next position absolute

!PRX nn mm	 Next position relative

!ACX nn mm	 Next acceleration

!DCX nn mm	 Next deceleration

!SX	 Next velocity

Example: 	 !PX 1 -50000 will cause the motor to move to that new destination once
the previous destination is reached. !PRX -10000 will cause the motor
to move 10000 count back from the previous end destination. If the
next acceleration, next deceleration or next velocity are not entered, the
value(s) used for the previous motion will be used.

Beware that the next commands must be entered while the motor is moving, since the
next commands will only be taken into account at the end of the current motion.

To chain more than two commands, use a MicroBasic script or an external program to
load new “next” command when the previous “next” commands become active. The ?DR
query can be used to detect that this transition has occurred and that a new next com-
mand can be sent to the controller.

Closed Loop Count Position Mode

188	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

The chart below shows a typical chaining flow.

Enter First Destination!P nn mm

Enter 2nd Destination!PX nn mm

?DR Destination Reached

Enter 3rd Destination!PX nn mm

?DR Destination Reached

Enter Last Destination!PX nn mm

FIGURE 12-2 Command Chaining flow

Position Accuracy Considerations
In the position mode, the controller computes a trajectory that the motor then attempts to
follow using a PID. For this technique to work well, the motor must first be physically able
to run as fast as dictated by the trajectory calculation. If not, a loop error (ie desired posi-
tion - actual position) will accumulate and eventually grow to trigger an error that will stop
the motor. Make sure that the velocity setting is always under the max speed that can be
reached by the motor while running at full load, in open loop.

Some difference between the desired and actual position, i.e. a loop error, is always to
be expected when using a PID. The PID gains must be tuned to minimize the loop error
while keeping smooth motion. The expected position and loop error can be monitored in
real time using the PC utility’s Tracking and Loop Error channels, respectively, in the chart
recorder.

Beware that the Destination Reached flag will become true when the result of the trajec-
tory computation equals the desired destination. In most practical situations, the motor
will still be on its way to actually reach that destination. This can be an important consid-
eration when chaining commands, as the new command will become active before the
motor has actually reached the previous destination

PID Tuning in Count Position Mode
As for any position control loop, the dominant PID parameter is the Proportional gain, with
typically no Integral and Derivative gain. The tuning process for count position control is
similar to the position relative and tracking position control PID tuning described in page
183 , except from the Proportional gain equation due to the absolute position feedback
utilized in count position mode.

PID Tuning in Count Position Mode

	 Advanced Digital Motor Controller User Manual� 189

Therefore, in closed loop count position mode, the position loop P gain can be calculated
through the following equation, utilizing the zero-pole cancelation method, considering
sensor resolution, as the PI control is applied in absolute position counts:

Kp=2pfBW 3
60

Sensor resolution

where:

Kp : Position loop P gain.

fBW : Bandwidth of the position control loop (Hz)

Sensor resolution: The utilized sensor resolution for one full mechanical revolution. Below
is the sensor resolution for each supported feedback type:

Encoder: Pulses per revolution x 4

SPI/SSI: Sensor counts resolution

Hall: Number of pole pairs x 6

Sin/Cos: 16384

Resolver: 16384

Example

For an encoder with 4096 pulses/rev and 1 Hz bandwidth selected the proportional posi-
tion gain should be:

Kp = (2 x 3.141 x 1 x 60)/(4096 x 4) = 0.023

It is noted that the speed gains should be configured first, in order to enable the internal
speed loop and operate in cascaded speed position mode. The speed loop gains can be
automatically, as well as manually, regulated from the Motor Sensor and Tuning setup
wizard supported in Roborun+ v3.0 utility (see Roborun+ Utility User Manual for more
details).

Recommended initial bandwidth for position control loop is 0.5Hz, considering also that
the typical speed loop range is 2-5 Hz.

Torque Mode Description

	 Advanced Digital Motor Controller User Manual� 191

SECTION 13	 Closed Loop
Torque Mode

This section describes the controller’s operation in Torque Mode.

Torque Mode Description
The torque mode is a special case of closed loop operation where the motor command
controls the current that flows through the motor regardless of the motor’s actual speed.

In an electric motor, the torque is directly related to the current. Therefore, controlling the
current controls the torque.

FIGURE 13-1. Torque mode

Torque mode is mostly used in electric vehicles since applying a higher command gives
more “push”, similarly to how a gas engine would respond to stepping on a pedal. Like-
wise, releasing the throttle will cause the controller to adjust the power output so that the
zero amps flow through the motor. In this case, the motor will coast and it will take a neg-
ative command (i.e. negative amps) to brake the motor to a full stop. When the sinusoidal
mode is selected, the field oriented current control is utilized, in order to regulate the Iq
(Torque Amps) and Id (Flux Amps) at the reference values for each kind of motor selected
(brushless dc, IPM, Induction).

Closed Loop Torque Mode

192	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Torque Mode Selection, Configuration and Operation
Use the PC utility and the menu “Operating Mode” to select Torque Mode. The controller
will now use user commands from RS232, RS485, TCP, USB, Network, Analog or Pulse to
command the motor current.

Torque commands can be given:

•	 G command, with range -1000 to +1000. The command for brushed controllers is
then scaled using the amps limit configuration value. For example, if the amps lim-
it is set to 100A, a user command of 500 will cause the controller to energize the
motor until 50A are measured. For brushless controllers and in sinusoidal mode,
the G command is scaled based on the torque (quadrature) amps limit. If flux amps
are always at 0 (no field weakening) then the scaling is the same.

•	 TC command, which is similar to G command but the command is given per
thousand of rated torque. The rated torque is derived out of the nominal current
(NOMA) and torque constant (TNM).

•	 GIQ command (applicable only for brushless motor controller and sinusoidal mode),
with which one can give the Torque (quadrature) amps command in Amps*10.

•	 GID command (applicable only for brushless motor controller and sinusoidal mode),
with which one can give the Flux amps command in Amps*10.

Torque Mode Tuning
In Torque Mode, the measured Motor Amps (or Flux and Torque Amps in sinusoidal mode)
become the feedback in the closed loop system. The PID then operates the same way as
in the other Closed Loop modes described in this manual (See “PID tuning in Closed Loop
Speed Mode” on page 172).

In sinusoidal mode, torque mode uses the PID that is regulating the Field Oriented
Control, which are the same with Closed Loop Torque PID parameters. See also the KIF
and KPF configuration commands or CIG and CPG runtime commands, respectively, in the
Commands Reference section. The Field Oriented Control PI parameters tuning process is
described in “FOC Gains Determination & Tuning” chapter in page 130 of the manual.

Speed Limiting
All Controllers provide a way of smoothly limiting the speed in torque mode to prevent
motor runaways. The method for limiting the speed is based on PID speed over-ride con-
trol which provides very smooth motor output but requires PID tuning.

Therefore for the torque loop we use the Torque Proportional Gain (KPF) and the Torque
Integral Gain (KIF), in Closed Loop Torque parameters, and the speed limit is tuned using
the Speed Proportional Gain (KPG), the Speed Integral Gain (KIG) and the Speed Derivative
Gain (KDG), in Closed Loop Speed parameters. The speed loop PID tuning can either be
done in “Closed Loop Torque Mode” at the speed limit or in “ Closed Loop Speed Mode”
by looking at the response time.

Use and benefits of Serial Communication

	 Advanced Digital Motor Controller User Manual� 193

SECTION 14	 Serial (RS232/
RS485/USB/TCP)
Operation

This section describes how to communicate to the controller via the RS232, RS485, USB
or TCP Interface. This information is useful if you plan to write your own controlling soft-
ware on a PC or microcomputer.

The full set of commands accepted by the controller is provided in “Commands Refer-
ence” in Section 15.

If you wish to use your PC simply to set configuration parameters and/or to exercise the
controller, you should use the RoborunPlus PC utility.

Use and benefits of Serial Communication
The serial communication allows the controller to be connected to PCs, PLC, microcom-
puters or wireless modems. This connection can be used to both send commands and
read various status information in real-time from the controller. The serial mode enables
the design of complex motion control system, autonomous robots or more sophisti-
cated remote controlled robots than is possible using the RC mode. RS232 and RS485
commands are very precise and securely acknowledged by the controller. They are also
the method by which the controller’s features can be accessed and operated to their
fullest extent.

When operating in RC or analog input, serial communication can still be used for monitor-
ing or telemetry.

When connecting the controller to a PC, the serial mode makes it easy to perform simple
diagnostics and tests, including:

•	 Sending precise commands to the motor
•	 Reading the current consumption values and other parameters
•	 Obtaining the controller’s software revision and date
•	 Reading inputs and activating outputs
•	 Setting the programmable parameters with a user-friendly graphical interface
•	 Updating the controller’s software

Serial (RS232/RS485/USB/TCP) Operation

194	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Serial Port Configuration
The controller’s default serial communication port is set as follows:

•	 115200 bits/s
•	 8-bit data
•	 1 Start bit
•	 1 Stop bit
•	 No Parity

Communication is done without flow control, meaning that the controller is always ready
to receive data and can send data at any time.

Connector RS232 Pin Assignment
1 13

14 25

18

9151 13

14 25

18

915

FIGURE 14-1. DB25 and DB15 connectors pin code locations

When used in the RS232 mode, the pins on the controller’s DB15 or DB25 connector (de-
pending on the controller model) are mapped as described in the table below

TABLE 14-1. RS232 Signals on DB15 and DB25 connectors §

Pin
Number

Input or
Output Signal Description

2 Output Data Out RS232 Data from Controller to PC

3 Input Data In RS232 Data In from PC

5 - Ground Controller ground

Connector RS485 Pin Assignment
When used in the RS485 mode, the pins on the controller’s DB15, DB25 or DB9 con-
nector (depending on the controller model) are mapped as described in each controller’s
datasheet.

Setting Different Bit Rates
It is possible to set RS232 and RS485 bit rate to lower values. This operation cannot be
done while the controller is connected via RS232 or RS485. Beware that once the bit rate
is different than the default 115200, it will no longer be able to communicate with the PC
utility if serial connection is used. From the Console, send the following commands:

^RSBR nn

Setting Different Bit Rates

	 Advanced Digital Motor Controller User Manual� 195

where nn =
0: 115200
1: 57600
2: 38400
3: 19200
4: 9600
10: 230400

Make sure that the controller respond to this command with a +. Check that the value has
been accepted by sending ~RSBR.

Send %EESAV from the console to store the new configuration to flash.

Cable configuration
The RS232 connection requires the special cabling as described in Figure 14-2. The 9-pin
female connector plugs into the PC (or other microcontroller). The 15-pin or 25-pin male
connector plugs into the controller.

It is critical that you do not confuse the connector’s pin numbering. The pin numbers
on the drawing are based on viewing the connectors from the front. Most connectors
brands have pin numbers molded on the plastic.

1

2

3

4

7

8

9
5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

6

TX Data

RX Data Data Out

Data In

GNDGND

DB9 Female
To PC

DB15 Male
To Controller

1

2

3

4

7

8

9
5

1

2

3

4

5

6

7

8

14

15

16

17

18

19

20

6

TX Data

RX Data Data Out

Data In

GNDGND

DB9 Female
To PC

DB25 Male
To Controller

9

21

10

22

11

23

12
24

13
25

FIGURE 14-2. PC to controller RS 232 cable/connector wiring diagram

The 9 pin to 15 pin cable is provided by Roboteq for controllers with 15 pin connectors.

Controllers with 25 pins connectors are fitted with a USB port that can be used with any
USB cables with a type B connector.

Serial (RS232/RS485/USB/TCP) Operation

196	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Extending the RS232 Cable
RS232 extension cables are available at most computer stores. However, you can easily
build one using a 9-pin DB9 male connector, a 9-pin DB9 female connector and any 3-con-
ductor cable. DO NOT USE COMMERCIAL 9-PIN TO 25-PIN CONVERTERS as these do
not match the 25-pin pinout of the controller. These components are available at any elec-
tronics distributor. A CAT5 network cable is recommended, and cable length may be up to
100’ (30m). Figure 14-3 shows the wiring diagram of the extension cable.

1

2

3

4

7

8

9
5

1

2

3

4

5

6

7

8

9

6

TX Data

RX Data Data Out

Data In

GNDGND

DB9 Female DB9 Male

FIGURE 14-3. RS232 extension cable/connector wiring diagram

Connecting to Arduino and other TTL Serial Microcomputers
Arduino and similar microcomputers have a TTL serial port. There are Roboteq controllers
supporting RS485, so the connection can be done directly. However, for the rest of the
controllers there is a full RS232 serial interface. RS232 has the following differences from
TTL serial:

TABLE 14-2. Connecting with TTL devices

RS232 TTL Serial

Voltage Levels +10V/-10V 0-3V

Logic level Inverted Non-Inverted

A TTL to RS232 adapter must be therefore be used to convert to the Arduino serial inter-
face. Newer Roboteq controller allows the RS232 signal to be non-inverted. Interfacing
to Arduino or other TTL Serial interface can therefore be done with just a resistors, and 2
optional diodes as shown in the diagram below:

Connecting to Arduino and other TTL Serial Microcomputers

	 Advanced Digital Motor Controller User Manual� 197

FIGURE 14-4. Simplified TTL to RS232 connection

The data sent from the TTL serial port are 0-3V and can be directly connected to the con-
troller’s RS232 input where it will be captured as valid 0-1 levels.

The data at the output of the controller is +/-10V. At the other end of the resistor, the
voltage is clamped to around 0-3.3V by the protection diodes that are included in the Ar-
duino MCU. However, to avoid any stress it is highly recommended to insert the 2 diodes
shown on the diagram.

To operate, the RS232 output must be set to inverted. This must be done from the Con-
sole of the Roborun Utility while connected via USB. This will only work on newer control-
ler models fitted with firmware version 1.6a or more recent.

From the Console, send the following commands:

^RSBR nn

where nn =

5: 115200 + Inverted RS232
6: 57600 + Inverted RS232
7: 38400 + Inverted RS232
8: 19200 + Inverted RS232
9: 9600 + Inverted RS232

Make sure that the controller respond to this command with a +. Check that the value has
been accepted by sending ~RSBR. If a - is replied or if the value is different than the one
entered, then the hardware and/or firmware does not support serial inverted and cannot
be used with this circuit.

Send %EESAV from the console to store the new configuration to flash.

Serial (RS232/RS485/USB/TCP) Operation

198	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

RS485 Configuration
Consult your controller’s datasheet in order to know whether RS485 communication is
supported. There are controller models whose pins related to RS485 communication are
shared with other functionalities (check the controller’s datasheet). For this reason for
these controllers only, the RS485 functionality is by default disabled. In order to enable it
the RS485 configuration command (RS485 enable) should be set to 1 (^RS485 1).

FIGURE 14-5. RS485 Enable configuration

USB Configuration
USB is available on all Roboteq controller models and provides a fast and reliable commu-
nication method between the controller and the PC. After plugging the USB cable to the
controller and the PC, the PC will detect the new hardware, and install the driver. Upon
successful installation, the controller will be ready to use.

The controller will appear like another Serial device to the PC. This method was selected
because of its simplicity, particularly when writing custom software: opening a COM port
and exchanging serial data is a well documented technique in any programming language.

Note that Windows will assign a COM port number that is more or less random. The Rob-
orun PC utility automatically scans all open COM ports and will detect the controller on its
own. When writing your own software, you will need to account for this uncertainty in the
COM port assignment.

Important Warning

Beware that because of its sophistication, the USB protocol is less likely to recover
than RS232 should an electrical disturbance occur. We recommend using USB for
configuration and monitoring, and use RS232 for field deployment. Deploy USB
based system only after performing extensive testing and verifying that it operates
reliably in your particular environment.

TCP Configuration
Controller models that support communication via an Ethernet cable are identified with
the letter E, for example, FBL2360E or FBL2360ES. By default, TCP communication is
disabled on controllers, so in order to use this feature configuration is needed. All configu-
ration parameters may be accessed under the Roborun+ Configuration tab. All TCP param-
eters are configurable from the TCP node under the Inputs/Outputs Column. Find more
details in section 15, “TCP Communication Commands”.

Command Priorities

	 Advanced Digital Motor Controller User Manual� 199

FIGURE 14-6. TCP configuration

All TCP/IP configuration changes will be applied after restarting the controller. Communi-
cation via TCP, Modbus TCP or Modbus TCP over RTU will be available as long as the TCP
mode is enabled.

Command Priorities
The controller will respond to commands from one of five possible sources:

•	 Network or Script Command
•	 Serial (RS232, RS485, TCP or USB)
•	 Pulse
•	 Analog

One, two, three or four (except from Network or Script command, which is always en-
abled) command modes can be enabled at the same time. When multiple modes are
enabled, the controller will select which mode to use based on a user selectable priority
scheme. The priority mechanism is described in details in “Input Command Modes and
Priorities” on page 79.

Communication Arbitration
Commands may arrive through the RS232, RS485, TCP or the USB port at the same time.
They are executed as they arrive in a first come first served manner. Commands that are
arriving via USB are replied on USB. Commands arriving via the UART are replied on the
UART. Redirection symbol for redirecting outputs to the other port exists (e.g. a command
can be made respond on USB even though it arrived on RS232).

Serial (RS232/RS485/USB/TCP) Operation

200	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Network Commands
Commands arriving via Network have bigger priority than serial commands and will not
conflict with motor command arriving via serial, TCP or USB. Network commands are
also subject to the serial Watchdog timer. Motors will be stopped and command input will
switch according to the Priority table if the Watchdog timer is allowed to timeout.

Script-generated Commands
Commands that are issued from a user script have bigger priority than serial and Network
commands and will not conflict with motor command arriving via serial, TCP, USB or the
network. Script commands are also subject to the serial Watchdog timer. Motors will be
stopped and command input will switch according to the Priority table if the Watchdog
timer is allowed to timeout.

Communication Protocol Description
The controller uses a simple communication protocol based on ASCII characters. Com-
mands are not case sensitive. ?a is the same as ?A. Commands are terminated by car-
riage return (Hex 0x0d, ‘\r’).

The underscore ‘_’ character is interpreted by the controller as a carriage return. This alter-
nate character is provided so that multiple commands can be easily concatenated inside
a single string. Please note that this feature is exclusive to the RS232 interface and does
not apply to RS485. For RS485 carriage return must be used.

All other characters lower than 0x20 (space) have no effect.

Character Echo
The controller will echo back to the PC or Microcontroller every valid character it has re-
ceived. If no echo is received, one of the following is occurring:

•	 echo has been disabled
•	 the controller is Off
•	 the controller may be defective

Command Acknowledgment
The controller will acknowledge commands in one of the two ways:

For commands that cause a reply, such as a configuration read or a speed or amps que-
ries, the reply to the query must be considered as the command acknowledgment.

For commands where no reply is expected, such as speed setting, the controller will issue
a “plus” character (+) followed by a Carriage Return after every command as an acknowl-
edgment.

Raw Redirect Mode

	 Advanced Digital Motor Controller User Manual� 201

Command Error
If a command or query has been received, but is not recognized or accepted for any rea-
son, the controller will issue a “minus” character (-) to indicate the error.

 If the controller issues the “-” character, it should be assumed that the command was
not recognized or lost and that it should be repeated.

Watchdog time-out
For applications demanding the highest operating safety, the controller should be config-
ured to automatically switch to another command mode or to stop the motor (but other-
wise remain fully active) if it fails to receive a valid command on its RS232, RS485, TCP,
USB or network ports, or from a MicroBasic Script for more than a predefined period.

By default, the watchdog is enabled with a timeout period of 1 second. Timeout period
can be changed or the watchdog can be disabled by the user. When the watchdog is en-
abled and timeout expires, then the controller will go to a Quick Stop (force the motor to
stop based on Fault Deceleration configuration command). After that the controller will
accept commands from the next source in the priority list. See “Command Priorities” on
page 181.

Controller Present Check
The controller will reply with an ASCII ACK character (0x06) anytime it receives a QRY
character (0x05). This feature can be used to quickly scan a serial port and detect the
presence, absence or disappearance of the controller. The QRY character can be sent at
any time (even in the middle of a command) and has no effect at all on the controller’s
normal operation.

Raw Redirect Mode
In the Raw Redirect mode, received unprocessed data coming from either RS232 or
RS485 interfaces, can be read by the user. Likewise, the user can send data with any
content towards either RS232 or RS485 interfaces. The data are split into frames. In ASCII
mode one frame is the sequence of characters ending with a termination character (\r).
In RTU mode one frame is defined based on the Modbus RTU regulations (after specific
silent time goes by, see Modbus Manual for more details).

Configuration
Raw Redirect mode is enabled for either RS232 or RS485 interfaces using the Raw Redi-
rect Mode (see ISM - Raw Redirect Mode, in page 313) configuration command. By de-
fault ASCII mode is used, however if the respective Modbus Mode (see DMOD – Modbus
Mode, in page 311) is set to RTU then the received data will be handled according to the
Modbus RTU regulations (See Modbus Manual for more details).

Checking Received Frames
Received frames are first loaded in the 256-byte FIFO buffer. Before a frame can be read,
it is necessary to check if any frames are present in the buffer using the ?CD query. The
query can be sent from the serial/USB port, or from a MicroBasic script using the getval-

Serial (RS232/RS485/USB/TCP) Operation

202	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

ue(_CD) function. The query will return the number of frames that are currently pending,
and copy the oldest frame into the read buffer, from which it can then be accessed. Send-
ing ?CD again, copies the next frame into the read buffer.

The query usage is as follows:

Syntax: ?CD

Reply: CD=number of frames pending

Reading Received Frames
After a frame has been moved to the read buffer, the frame size and the data can be read
with the ?DDT query. The query can be sent from the serial/USB port, or from a MicroBa-
sic script using DDT query or SDT query for ASCII mode. The query usage is as follows:

Syntax: ?DDT [ee]

Reply: DDT=frame size:data0:data1: :dataN

Where: ee = frame element

1 = byte size

2-64 = data0 to data62

Examples:

Q: ?DDT

R: DDT=8:82:111:98:111:116:101:113

Q: ?DDT 3

R: DDT=111

Q: ?SDT

R: SDT=”Roboteq”

Transmitting Frames
ASCII or RTU data can easily be transmitted using the Send Raw USART Frames Com-
mand !CU. This command can be used to define the output port (RS232 or RS485), the
frame length and the data, one element at a time. The frame is sent immediately after the
frame length is entered, and so it should be entered last.

Syntax: !CU ee nn

Where: ee = frame element

Raw Redirect Mode

	 Advanced Digital Motor Controller User Manual� 203

 1 = outport (0 for RS232 and 6 for RS485)

 2 = frame length

 3 to 18 = data0 to data15

 nn = value

Examples: !CS 1 0 Enter 0 in outport (RS232)

 !CS 3 49 Enter 49 in Data 0

 !CS 4 50 Enter 50 in Data 1

 !CS 4 51 Enter 51 in Data 2

 !CS 2 3 Enter 2 in frame length. Send data frame

Commands Types

	 Advanced Digital Motor Controller User Manual� 205

SECTION 15	 Commands
Reference

This section lists all the commands accepted by the controller. Commands are typically
sent via the serial (RS232, RS485, TCP or USB) ports (See “Serial (RS232/RS485/TCP/
USB) Operation” in Section 14) Except for a few maintenance commands, they can also be
issued from within a user script written using the MicroBasic language (See “MicroBasic
Scripting Manual”).

Commands Types
The controller will accept and recognize four types of commands:

Runtime commands

These start with “!” when called via the serial communication (RS232, RS485, TCP or
USB), or using the setcommand() MicroBasic function. These are usually motor or oper-
ation commands that will have immediate effect (e.g. to turn on the motor, set a speed
or activate digital output). Most of Runtime commands are mapped inside a respective
Object Directories in order to be accessed by the network interfaces, CAN/CANOpen,
EtherCAT and Profinet (See “CAN/EtherCAT Networking Manual” or “Profinet Networking
Manual” respectively) See “Runtime Commands” on page 188 for the full list and descrip-
tion of these commands.

Runtime queries

These start with “?” when called via the serial communication (RS232, RS485, TCP or
USB), or using the getvalue() Microbasic function. These are used to read operating values
at runtime (e.g. read Amps, Volts, power level, counter values). Most of Runtime queries
are mapped inside a respective Object Directories in order to be accessed by the net-
work interfaces, CAN/CANOpen, EtherCAT and Profinet (See “CAN/EtherCAT Networking
Manual” or “Profinet Networking Manual” respectively). See Runtime commands are
commands that can be sent at any time during controller operation and are taken into
consideration immediately. Runtime commands start with “!” and are followed by one to
three letters. Runtime commands are also used to refresh the watchdog timer to ensure
safe communication. Runtime commands can be called from a MicroBasic script using the
setcommand() function.

Maintenance commands

These are only available trough serial (RS232, RS485, TCP or USB) and start with “%”.
They are used for all of the maintenance commands such as (e.g. set the time, save con-
figuration to EEPROM, reset, load default, etc.).

Commands Reference

206	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Configuration commands

These start with “~” for read and “^” for write when called via the serial communication
(RS232, RS485, TCP or USB), or using the getconfig() and setconfig() MicroBasic func-
tions. They are used to read or configure all the operating parameters of the controller
(e.g. set or read amps limit). See “Set/Read Configuration Commands” on page 303 for
the full list and description of these commands.

Runtime Commands
Runtime commands are commands that can be sent at any time during controller oper-
ation and are taken into consideration immediately. Runtime commands start with “!”
and are followed by one to three letters. Runtime commands are also used to refresh the
watchdog timer to ensure safe communication. Runtime commands can be called from a
MicroBasic script using the setcommand() function.

TABLE 15-1. Runtime Commands

Command Arguments Description

AC Channel Acceleration Set Acceleration

AX Channel Acceleration Next Acceleration

B VarNbr Value Set User Boolean Variable

BRK Channel Value Brake Override

C Channel Value Set Encoder Counters

CB Channel Value Set Internal Sensor Counter

CIG PID Channel Gain Set Current Integral Gains

CG Channel Value Set Motor Command via CAN

CPG PID Channel Gain Set Current Proportional Gains

CS Element Value CAN Send

CSS Channel Value Set SSI Sensor Counter

CU Element Value Raw Redirect Send

D0 OutputNbr Reset Individual Digital Out bits

D1 OutputNbr Set Individual Digital Out bits

DC Channel Deceleration Set Deceleration

DG PID Channel Gain Set PID Derivative Gains

DS Value Set all Digital Out bits

DX Channel Value Next Decceleration

EES None Save Configuration in EEPROM

EX None Emergency Shutdown

G Channel Value Go to Speed or to Relative Position

GIQ Channel Value Go to Torque Amps

GID Channel Value Go to Flux Amps

H Channel Load Home counter

IG PID Channel Gain Set PID Integral Gains

MG None Emergency Stop Release and Fault Clearance

MS Channel Stop in all modes

MSS Channel Motor Sensor Setup

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 207

Command Arguments Description

P Channel Destination Go to Absolute Desired Position

PG PID Channel Gain Set PID Proportional Gains

PR Channel Delta Go to Relative Desired Position

PRX Channel Delta Next Go to Relative Desired Position

PX Channel Delta Next Go to Absolute Desired Position

QST Channel Value Quick Stop

R [Option] MicroBasic Run

RST Channel Value Resets the drive

S Channel Value Set Motor Speed

STT None STO Self-Test

SX Channel Value Next Velocity

VAR VarNbr Value Set User Variable

AC - Set Acceleration

Alias: ACCEL	 HexCode: 07	 CANOpen id: 0x2006

Description:

Set the rate of speed change during acceleration for a motor channel. This command is
identical to the MACC configuration command but is provided so that it can be changed
rapidly during motor operation. Acceleration value is in 0.1 * RPM per second. When using
controllers fitted with encoder, the speed and acceleration value are actual RPMs. Brush-
less motor controllers use the hall sensor for measuring actual speed and acceleration will
also be in actual RPM/s. When using the controller without speed sensor, the acceleration
value is relative to the Max RPM configuration parameter, which itself is a user-provided
number for the speed normally expected at full power. Assuming that the Max RPM pa-
rameter is set to 1000, and acceleration value of 10000 means that the motor will go from
0 to full speed in exactly 1 second, regardless of the actual motor speed. In Closed Loop
Torque mode acceleration value is in 10 * miliAmps per second. This command is not ap-
plicable if either of the acceleration (MAC) or deceleration (MDEC) configuration value is
set to 0.

Syntax Serial:	 !AC cc nn

Syntax Scripting:	 setcommand(_AC, cc, nn)

		 setcommand(_ACCEL, cc, nn)

Number of Arguments: 2

Argument 1: 	 Channel
		 Min: 1	 Max: Total Number of Motors

Argument 2: 	 Acceleration	 Type: Signed 32-bit
		 Min: 0	 Max: 500000

Where:
cc = Motor channel
nn = Acceleration value in 0.1 * RPM/s

Commands Reference

208	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example:

!AC 1 2000 : Increase Motor 1 speed by 200 RPM every second if speed is measured by
encoder
!AC 2 20000 : Time from 0 to full power is 0.5s if no speed sensors are present and Max
RPM is set to 1000

AX - Next Acceleration

Alias: NXTACC	 HexCode: 14	 CANOpen id: 0x2012

Description:

This command is used for chaining commands in Position Count mode. It is similar to
AC except that it stores an acceleration value in a buffer. This value will become the next
acceleration the controller will use and becomes active upon reaching a previous desired
position. If omitted, the command will be chained using the last used acceleration value.
This command is not applicable if either of the acceleration (MAC) or deceleration (MDEC)
configuration value is set to 0.

Syntax Serial:	 !AX cc nn

Syntax Scripting:	 setcommand(_AX, cc, nn)

		 setcommand(_NXTACC, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Acceleration	 Type: Signed 32-bit

	 Min: 0	 Max: 500000

Where:

cc = Motor channel
nn = Acceleration value in 0.1 * RPM/s

B - Set User Boolean Variable

Alias: BOOL	 HexCode: 16	 CANOpen id: 0x2015

Description:

Set the state of user boolean variables inside the controller. These variables can then be
read from within a user MicroBasic script to perform specific actions.

Syntax Serial:	 !B nn mm

Syntax Scripting:	 setcommand(_B, nn, mm)

		 setcommand(_BOOL, nn, mm)

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 209

Number of Arguments: 2

Argument 1: VarNbr	

	 Min: 1	 Max: Total nbr of Bool Vars

Argument 2: Value	 Type: Boolean

	 Min: 0	 Max: 1

Where:

nn = Variable number
mm = 0 or 1

Note:

The total number of user variables depends on the controller model and can be found in
the product datasheet.

BRK - Brake Override

Alias: -		 HexCode: AB		 CANOPEN id: 0x2034

Description:

This command is used to override the automatic engage/release of the brake. The Digital
Out action must be configured as “Motor is On”.

Syntax Serial: !BRK cc nn

Syntax Scripting: setcommand (_BRK, cc)

Number of Arguments:

Argument 1: PWM Brake Channel
		 Min: 1 Max: Total Number of Motors

Argument 2: Override Status Type: Unsigned 8-bit

		 Min: 0 Max: 2 Default: 0

Where:

nn =
0: Auto. Brake is controlled by Motor is On action.
1: Brake Release. Brake is released ignoring the Motor is On action.
2: Brake Engage. Brake is engaged ignoring the Motor is On action.

Example:

!BRK 1 1: will release the PWM brake.

Important Note

This command overrides the automatic brake control. This also means that if the
motor is running and the user sends a Force brake command, the brake WILL be en-
gaged.

Commands Reference

210	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

C - Set Encoder Counters

Alias: SENCNTR	 HexCode: 04	 CANOpen id: 0x2003

Description:

This command loads the encoder counter for the selected motor channel with the value
contained in the command argument. Beware that changing the controller value while op-
erating in closed-loop mode can have adverse effects.

Syntax Serial:	 !C [cc] nn

Syntax Scripting:	 setcommand(_C, cc, nn)
		 setcommand(_SENCNTR, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Encoders

Argument 2: Value	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = Motor channel
nn = Counter value

Example:

!C 2 -1000 : Loads -1000 in encoder counter 2
!C 1 0 : Clears encoder counter 1

CB - Set Internal Sensor Counter

Alias: SBLCNTR	 HexCode: 05	 CANOpen id: 0x2004

Description:

This command loads the Internal Sensor counter with the value contained in the com-
mand argument. Beware that changing the controller value while operating in closed-loop
mode can have adverse effects.

Syntax Serial:	 !CB [cc] nn

Syntax Scripting:	 setcommand(_CB, cc, nn)
		 setcommand(_SBLCNTR, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 211

Where:

cc = Motor channel
nn = Counter value

Example:

!CB 1 -1000 : Loads -1000 in brushless counter 1
!CB 2 0 : Clears brushless counter 2

CIG – Set Current Integral Gains

Alias: -		 HexCode: A5		 CANOpen id: 0x2032

Description:

Sets the Current PI’s Integral Gain. The value is set as the gain multiplied by 10^4. On
brushless motor controller operating in sinusoidal mode, two gains can be set for each
motor channel, in order to control the Flux and Torque current. On DC brushed controllers
or in brushless motor controllers when operating in trapezoidal mode the gains for the
Torque current are used only.

Syntax Serial: !CIG [cc] nn

Syntax Scripting: setcommand(_CIG, cc, nn)

Number of Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Argument 2: Gain	Type: Unsigned 32-bit

		 Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =

			 1: Flux Integral Gain

			 2: Torque Integral Gain

cc (dual channel) =

			 1: Flux Integral Gain for motor 1

			 2: Flux Integral Gain for motor 2

			 3: Torque Integral Gain for motor 1

			 4: Torque Integral Gain for motor 2

nn: Integral Gain*10.000

Example:

!CIG 1 2300 : will set Flux Integral Gain of Motor 1 to 0.23

Commands Reference

212	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

CG - Set Motor Command via CAN

Alias: CANGO	 HexCode: 19	 CANOpen id: 0x2000

Description:

This command is identical to the G (GO) command except that it is meant to be used for
sending motor commands via CANOpen. See the G command for details.

Syntax Serial:	 !CG cc nn

Syntax Scripting:	 setcommand(_CG, cc, nn)
		 setcommand(_CANGO, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: -1000	 Max: +1000

Where:

cc = Motor channel
nn = Command value

CPG – Set Current Proportional Gains

Alias: -		 HexCode: A4		 CANOpen id: 0x2031

Description:

Sets the Current PI’s Proportional Gain. The value is set as the gain multiplied by 10^4. On
brushless motor controller operating in sinusoidal mode, two gains can be set for each
motor channel, in order to control the Flux and Torque current. On DC brushed controllers
or in brushless motor controllers when operating in trapezoidal mode the gains for the
Torque current are used only.

Syntax Serial: !CPG [cc] nn

Syntax Scripting: setcommand(_CPG, cc, nn)

Number of Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Argument 2: Gain	Type: Unsigned 32-bit

		 Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 213

			 1: Flux Proportional Gain

			 2: Torque Proportional Gain

cc (dual channel) =

			 1: Flux Proportional Gain for motor 1

			 2: Flux Proportional Gain for motor 2

			 3: Torque Proportional Gain for motor 1

			 4: Torque Proportional Gain for motor 2

nn: Proportional Gain*10.000

Example:

!CPG 1 2300 : will set Flux Proportional Gain of Motor 1 to 0.23

CS - CAN Send

Alias: CANSEND	 HexCode: 18	 CANOpen id:

Description:

This command is used in CAN-enabled controllers to build and send CAN frames in the
RawCAN mode (See RawCAN section in manual). It can be used to enter the header,
bytecount, and data, one element at a time. The frame is sent immediately after the byte-
count is entered, and so it should be entered last.

Syntax Serial:	 !CS ee nn

Syntax Scripting:	 setcommand(_CS, ee, nn)
		 setcommand(_CANSEND, ee, nn)

Number of Arguments: 2

Argument 1: Element	

	 Min: 1	 Max: 10

Argument 2: Value	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255

Where:

ee =
1 : Header
2 : Bytecount
3 to 10 : Data0 to data7
nn = value

Example:

!CS 1 5 : Enter 5 in header
!CS 3 2 : Enter 2 in data 0
!CS 4 3 : Enter 3 in data 1
!CS 2 2 : Enter 2 in bytecount and send CAN frame

Commands Reference

214	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

CSS - Set SSI Sensor Counter

Alias: -	 HexCode: 6C	 CANOpen id: 0x201F

Description:

This command loads the SSI Sensor counter with the value contained in the command
argument. Beware that changing the controller value while operating in closed-loop mode
can have adverse effects. This command is not applicable if the respective sensor’s use
has been set as absolute feedback.

Syntax Serial: !CSS [cc] nn

Syntax Scripting: setcommand(_CSS, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of SSI sensors

Argument 2: Value Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = SSI sensor channel
nn = Counter value

Example:

!CSS 1 -1000 : Loads -1000 in SSI sensor counter 1
!CSS 2 0 : Clears SSI sensor counter 2

CU - Raw Redirect Send

Alias: - HexCode: 94 CANOpen id: -

Description:

This command is used to build and send Raw frames in serial interfaces (See Raw Re-
direct section in manual). It can be used to enter the outport (RS232 or RS485), frame
length, and data, one element at a time. The frame is sent immediately after the frame
length is entered, and so it should be entered last.

Syntax Serial: !CS ee nn

Syntax Scripting: setcommand(_CS, ee, nn)

Number of Arguments: 2

Argument 1: Element

 Min: 1 Max: 18

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 215

Argument 2: Value Type: Unsigned 8-bit

 Min: 0 Max: 255

Where: ee = frame element

 1 = outport (0 for RS232 and 6 for RS485)

 2 = frame length

 3 to 18 = data0 to data15

 nn = value

Examples: !CS 1 0 Enter 0 in outport (RS232)

 !CS 3 49 Enter 49 in Data 0

 !CS 4 50 Enter 50 in Data 1

 !CS 4 51 Enter 51 in Data 2

 !CS 2 3 Enter 2 in frame length. Send data frame

D0 - Reset Individual Digital Out bits

Alias: DRES	 HexCode: 09	 CANOpen id: 0x200A

Description:

The D0 command will turn off the single digital output selected by the number that fol-
lows.

Syntax Serial:	 !D0 nn

Syntax Scripting:	 setcommand(_D0, nn)
		 setcommand(_DRES, nn)

Number of Arguments: 1

Argument 1: OutputNbr	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of Digital Outs

Where:

nn = Output number

Example:

!D0 2 : will deactivate output 2

Note:

Digital Outputs are Open Collector. Activating an outputs will force it to ground. Deactivat-
ing an output will cause it to float.

Commands Reference

216	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

D1 - Set Individual Digital Out bits

Alias: DSET	 HexCode: 0A	 CANOpen id: 0x2009

Description:

The D1 command will activate the single digital output that is selected by the parameter
that follows.

Syntax Serial:	 !D1 nn

Syntax Scripting:	 setcommand(_D1, nn)
		 setcommand(_DSET, nn)

Number of Arguments: 1

Argument 1: OutputNbr	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of Digital Outs

Where:

nn = Output number

Example:

!D1 1 : will activate output 1

Note:

Digital Outputs are Open Collector. Activating an outputs will force it to ground. Deactivat-
ing an output will cause it to float.

DC - Set Deceleration

Alias: DECEL	 HexCode: 08	 CANOpen id: 0x2007

Description:

Set the rate of speed change during decceleration for a motor channel. This command is
identical to the MDEC configuration command but is provided so that it can be changed
rapidly during motor operation. Decceleration value is in 0.1 * RPM per second. When
using controllers fitted with encoder, the speed and decceleration value are actual RPMs.
Brushless motor controllers use the hall sensor for measuring actual speed and deccel-
eration will also be in actual RPM/s. When using the controller without speed sensor,
the decceleration value is relative to the Max RPM configuration parameter, which itself
is a user-provided number for the speed normally expected at full power. Assuming that
the Max RPM parameter is set to 1000, and decceleration value of 10000 means that
the motor will go from full speed to 0 in exactly 1 second, regardless of the actual motor
speed. In Closed Loop Torque mode deceleration value is in 0.1 * miliAmps per second.
This command is not applicable if either of the acceleration (MAC) or deceleration (MDEC)
configuration value is set to 0.

Syntax Serial:	 !DC cc nn

Syntax Scripting:	 setcommand(_DC, cc, nn)
		 setcommand(_DECEL, cc, nn)

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 217

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Deceleration	 Type: Signed 32-bit

	 Min: 0	 Max: 500000

Where:

cc = Motor channel
nn = Deceleration value in 0.1 * RPM/s

Example:

!DC 1 2000 : Reduce Motor 1 speed by 200 RPM every second if speed is mea-
sured by encoder
!DC 2 20000 : Time from full power to stop is 0.5s if no speed sensors are present and
Max RPM is set to 1000

DG – Set PID Derivative Gains

Alias: -		 HexCode: A3		 CANOpen id: 0x2030

Description:

Sets the PID’s Derivative Gain. The value is set as the gain multiplied by 10^6. This value is
used for both speed and position derivative gains.

Syntax Serial: !DG [cc] nn

Syntax Scripting: setcommand(_DG, cc, nn)

Number of Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Argument 2: Gain	Type: Unsigned 32-bit

		 Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =
			 1: Speed Derivative Gain

			 2: Position Derivative Gain

cc (dual channel) =

			 1: Speed Derivative Gain for motor 1

			 2: Speed Derivative Gain for motor 2

			 3: Position Derivative Gain for motor 1

			 4: Position Derivative Gain for motor 2

nn: Derivative Gain*1.000.000

Commands Reference

218	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example:

!DG 1 10.000 : will set Speed Derivative Gain of Motor 1 to 0.01

DS - Set all Digital Out bits

Alias: DOUT	 HexCode: 09	 CANOpen id: 0x2008

Description:

The D command will turn ON or OFF one or many digital outputs at the same time. The
number can be a value from 0 to 255 and binary representation of that number has 1bit
affected to its respective output pin.

Syntax Serial:	 !DS nn

Syntax Scripting:	 setcommand(_DS, nn)
		 setcommand(_DOUT, nn)

Number of Arguments: 1

Argument 1: Value	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255

Where:

nn = Bit pattern to be applied to all output lines at once

Example:

!DS 03 : will activate outputs 1 and 2. All others are off

Note:

Digital Outputs are Open Collector. Activating an outputs will force it to ground. Deactivat-
ing an output will cause it to float.

DX - Next Deceleration

Alias: NXTDEC	 HexCode: 15	 CANOpen id: 0x2013

Description:

This command is used for chaining commands in Position Count mode. It is similar to
DC except that it stores a decceleration value in a buffer. This value will become the next
decceleration the controller will use and becomes active upon reaching a previous desired
position. If omitted, the command will be chained using the last used decceleration value.
This command is not applicable if either of the acceleration (MAC) or deceleration (MDEC)
configuration values is set to 0 (bypass command ramp).

Syntax Serial:	 !DX cc nn

Syntax Scripting:	 setcommand(_DX, cc, nn)
		 setcommand(_NXTDEC, cc, nn)

Number of Arguments: 2

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 219

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: 0	 Max: 500000

Where:

cc = Motor channel
nn = Acceleration value

EES - Save Configuration in EEPROM

Alias: EESAV	 HexCode: 1B	 CANOpen id: 0x2017

Description:

This command causes any changes to the controller’s configuration to be saved to Flash.
Saved configurations are then loaded again next time the controller is powered on. This
command is a duplication of the EESAV maintenance command. It is provided as a
Real-Time command as well in order to make it possible to save configuration changes
from within MicroBasic scripts.

Syntax Serial:	 !EES

Syntax Scripting:	 setcommand(_EES, 1)
		 setcommand(_EESAV, 1)

Number of Arguments: 0

Note:

Do not save configuration while motors are running. Saving to EEPROM takes several mil-
liseconds, during which the control loop is suspended.
Number of EEPROM write cycles are limited to around 10000. Saving to EEPROM must
be done scarcely.

EX - Emergency Stop

Alias: ESTOP	 HexCode: 0E	 CANOpen id: 0x200C

Description:

The EX command will cause the controller to enter an emergency stop in the same
way as if hardware emergency stop was detected on an input pin. The emergency stop
condition will remain until controller is reset or until the MG release command is received.

Syntax Serial:	 !EX

Syntax Scripting:	 setcommand(_EX, cc)
		 setcommand(_ESTOP, cc)

Number of Arguments: 1

Commands Reference

220	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: Channel		 Type: Unsigned 8-bit

	 Min: 1	 		 Max: Total Number of channels+1

Where:

cc =
1: All channels
2: Channel 1
3: Channel 2
4: Channel 3

Example:

!EX 3: Will trigger Emergency stop only for channel 2.

G - Go to Speed or to Relative Position

Alias: GO	 HexCode: 00	 CANOpen id: Use CG

Description:

G is the main command for activating the motors. The command is a number ranging
1000 to +1000 so that the controller respond the same way as when commanded using
Analog or Pulse, which are also -1000 to +1000 commands. The effect of the command
differs from one operating mode to another.

In Open Loop Speed mode the command value is the desired power output level to be
applied to the motor.

In Closed Loop Speed mode, the command value is relative to the maximum speed that is
stored in the MXRPM configuration parameter.

In Closed Loop Position Relative and in the Closed Loop Tracking mode, the command is
the desired relative destination position mode.

The G command has no effect in the Position Count mode.

In Torque mode, the command value is the desired Motor Amps relative to the Amps Limit
configuration parameters

Syntax Serial:	 !G [nn] mm

Syntax Scripting:	 setcommand(_G, nn, mm)
		 setcommand(_GO, nn, mm)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 221

	 Min: -1000	 Max: 1000

Where:

cc = Motor channel
nn = Command value

Example:

!G 1 500 : In Open Loop Speed mode, applies 50% power to motor channel 1
!G 1 500 : In Closed Loop Speed mode, assuming that 3000 is contained in Max RPM pa-
rameter (MXRPM), motor will go to 1500 RPM
!G 1 500 : In Closed Loop Relative or Closed Loop Tracking modes, the motor will move to
75% position of the total -1000 to +1000 motion range
!G 1 500 : In Torque mode, assuming that Amps Limit is 60A, motor power will rise until
30A are measured.

GIQ - Go to Torque Amps

Alias: -	 HexCode: 7A	 CANOpen id: -

Description:

GIQ is the command for the torque amps in closed loop torque mode only in sinusoidal
mode. In other cases it is void. The value is set in Amps*10. After the motor stops or at
power up the target flux amps is set by the TID value.

Syntax Serial: !GIQ [nn] mm

Syntax Scripting: setcommand(_GIQ, nn, mm)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1	 Max: Total Number of Motors

Argument 2: Amps

Type: Signed 32

	 Min: 0	 Max: Max Amps in datasheet

Where:

cc = Motor channel

nn = Amps*10

Example:

!GIQ 1 500 : In Closed Loop Torque mode, applies 50,0A torque amps command.

Commands Reference

222	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

GID - Go to Flux Amps

Alias: -	 HexCode: 7B	 CANOpen id: -

Description:

GID is the command for the flux amps in closed loop torque mode only in sinusoidal
mode. In other cases it is void. The value is set in Amps*10. A non-zero value creates field
weakening and can be used to achieve higher rotation speed

Syntax Serial: !GID [nn] mm

Syntax Scripting: setcommand(_GID, nn, mm)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1	 Max: Total Number of Motors

Argument 2: Amps

	 Type: Signed 32

	 Min: 0	 Max: Max Amps in datasheet

Where:

cc = Motor channel

nn = Amps*10

Example:

!GID 1 -200: In Closed Loop Torque mode, applies -20,0A flux amps command (field weak-
ening).

H - Load Home counter

Alias: HOME	 HexCode: 0D	 CANOpen id: 0x200B

Description:

This command loads the Home count value into the Encoder, SSI Sensor, or Brushless
Counters. The Home count can be any user value and is set using the EHOME, SHOME
and BHOME configuration parameters. When SSI sensors are used as absolute encoders
(Absolute Feedback) then this command loads to the Home count value the SSI sensor
counter. In this case the Home count value is used as offset to the SSI sensor Counter.
Beware that loading the counter with the home value while the controller is operating in
closed loop can have adverse effects.

Syntax Serial:	 !H [cc]

Syntax Scripting:	 setcommand(_H, cc)
		 setcommand(_HOME, cc)

Number of Arguments: 1

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 223

Argument 1: Channel	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total Number of Encoders

Where:

cc = Motor channel

Example:

!H 1: Loads encoder counter 1, SSI sensor counter 1 and brushless counter 1 with their
preset home values.

IG – Set PID Integral Gains

Alias: -		 HexCode: A2		 CANOpen id: 0x202F

Description:

Sets the PID’s Integral Gain. The value is set as the gain multiplied by 10^6. This value is
used for both speed and position integral gains.

Syntax Serial: !IG [cc] nn

Syntax Scripting: setcommand(_IG, cc, nn)

Number of Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Argument 2: Gain	Type: Unsigned 32-bit

		 Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =

			 1: Speed Integral Gain

			 2: Position Integral Gain

cc (dual channel) =

			 1: Speed Integral Gain for motor 1

			 2: Speed Integral Gain for motor 2

			 3: Position Integral Gain for motor 1

			 4: Position Integral Gain for motor 2

nn: Integral Gain*1.000.000

Example:

!IG 1 100.000 : will set Speed Integral Gain of Motor 1 to 0.1

Commands Reference

224	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

MG - Emergency Stop Release and Fault Clearance

Alias: MGO	 HexCode: 0F	 CANOpen id: 0x200D

Description:

The MG command will release the emergency stop condition or any other fault and allow
the controller to return to normal operation. Always make sure that the fault condition has
been cleared before sending this command.

Syntax Serial:	 !MG

Syntax Scripting:	 setcommand(_MG, 1)
		 setcommand(_MGO, 1)

Number of Arguments: 0

MS - Stop in all modes

Alias: MSTOP	 HexCode: 10	 CANOpen id: 0x200E

Description:

The MS command will stop the motor for the specified motor channel.

Syntax Serial:	 !MS [cc]

Syntax Scripting:	 setcommand(_MS, cc)
		 setcommand(_MSTOP, cc)

Number of Arguments: 1

Argument 1: Channel	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total Number of Motors

Where:

cc = Motor channel

MSS - Motor Sensor Setup

Alias: - 	 HexCode: 62	 CANOpen id: 0x202d

Description:

This command is used in order to perform motor and/or sensor setup, in cases of DC
brushless motor controllers, when working in Sinusoidal mode. This command will make
the motor spin slowly and will configure accordingly the respective fields in order to have
a smooth motor spin and alignment between the motor and the sensor directions. During
setup no motor command can be applied to the motors. For more details see Section 8.

Syntax Serial: !MSS [cc]

Syntax Scripting: setcommand(_MSS, cc)

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 225

Number of Arguments: 1

Argument 1: Channel	 Type: Unsigned 8-bit

 Min: 1 Max: Total Number of Motors

Where:

cc = Motor channel

P - Go to Absolute Desired Position

Alias: MOTPOS	 HexCode: 02	 CANOpen id: 0x2001

Description:

This command is used in the Position Count mode to make the motor move to a specified
feedback sensor count value. Take into consideration that in case of DS402 enabled, then
this command is not active. POS command should be used instead.

Syntax Serial:	 !P [cc] nn

Syntax Scripting:	 setcommand(_P, cc, nn)
		 setcommand(_MOTPOS, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1	 Max: Total Number of Motors

Argument 2: Destination	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = Motor channel
nn = Absolute count destination

Example:

!P 1 10000 : make motor go to absolute count value 10000.

PG – Set PID Proportional Gains

Alias: -		 HexCode: A1		 CANOpen id: 0x202E

Description:

Sets the PID’s Proportional Gain. The value is set as the gain multiplied by 10^6. This value
is used for both speed and position proportional gains.

Syntax Serial: !PG [cc] nn

Syntax Scripting: setcommand(_PG, cc, nn)

Number of Arguments: 2

Commands Reference

226	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Argument 2: Gain	Type: Unsigned 32-bit

		 Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =

			 1: Speed Proportional Gain

			 2: Position Proportional Gain

cc (dual channel) =

			 1: Speed Proportional Gain for motor 1

			 2: Speed Proportional Gain for motor 2

			 3: Position Proportional Gain for motor 1

			 4: Position Proportional Gain for motor 2

nn: Proportional Gain*1.000.000

Example:

!PG 1 100.000 : will set Speed Proportional Gain of Motor 1 to 0.1

PR - Go to Relative Desired Position

Alias: MPOSREL	 HexCode: 11	 CANOpen id: 0x200F

Description:

This command is used in the Position Count mode to make the motor move to a feedback
sensor count position that is relative to its current desired position.

Syntax Serial:	 PR [cc] nn

Syntax Scripting:	 setcommand(_PR, cc, nn)
		 setcommand(_MPOSREL, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Delta	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = Motor channel
nn = Relative count position

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 227

Example:

!PR 1 10000 : while motor is stopped after power up and counter = 0, motor 1 will go to
+10000
!PR 2 10000 : while previous command was absolute goto position !P 2 5000, motor will
go to +15000

Note:

Beware that counter will rollover at counter values +/-2’147’483’648.

PRX - Next Go to Relative Desired Position

Alias: NXTPOSR	 HexCode: 13	 CANOpen id: 0x2011

Description:

This command is similar to PR except that it stores a relative count value in a buffer. This
value becomes active upon reaching a previous desired position and will become the next
destination the controller will go to. See Position Command Chaining in manual.

Syntax Serial:	 !PRX [cc] nn

Syntax Scripting:	 setcommand(_PRX, cc, nn)
		 setcommand(_NXTPOSR, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Delta	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = Motor channel
nn = Relative count position

Example:

!P 1 5000 followed by !PRX 1 -10000 : will cause motor to go to count position 5000 and
upon reaching the destination move to position -5000.

PX - Next Go to Absolute Desired Position

Alias: NXTPOS	 HexCode: 12	 CANOpen id: 0x2010

Description:

This command is similar to P except that it stores an absolute count value in a buffer. This
value will become the next destination the controller will go to and becomes active upon
reaching a previous desired position. See Position Command Chaining in manual.

Syntax Serial:	 !PX [nn] cc
Syntax Scripting:	 setcommand(_PX, nn, cc)
		 setcommand(_NXTPOS, nn, cc)

Commands Reference

228	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Delta	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = Motor channel
nn = Absolute count position

Example:

!P 1 5000 followed by !PX 1 -10000 : will cause motor to go to count position 5000 and
upon reaching the destination move to position -10000.

QST - Quick Stop

Alias: HexCode:8D	 CanOpen id: 0x202C

Description:

With this command the motor speed decelerates to zero according to the fault decelera-
tion speed ramp. This command can be used when the user wants to decelerate the mo-
tor speed to zero at all modes. A safe stop flag will be generated during the deceleration
and it will be reseted when the motor command will be idle (0 in speed modes or equal to
feedback in position modes) and the speed 0.

Please note that Quick Stop will switch the system to Speed mode to decelerate the mo-
tor. For proper operation, the Speed mode must be configured with the appropriate PID
gains.

Syntax Serial: !QST [cc]

Syntax Scripting: setcommand (_QST, cc)

Number of Arguments: 1

Min:1 Max: Total number of Motors

Where:

cc= Motor channel

Example:

!QST 1: The motor 1 will start decelerate its speed according to deceleration speed ramp.

R - MicroBasic Run

Alias: BRUN	 HexCode: 0C	 CANOpen id: 0x2018

Description:

This command is used to start, stop and restart a MicroBasic script if one is loaded in the
controller.

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 229

Syntax Serial:	 !R [nn]

Syntax Scripting:	 setcommand(_R, nn)
		 setcommand(_BRUN, nn)

Number of Arguments: 1

Argument 1: [Option]	 Type: Unsigned 8-bit

	 Min: None	 Max: 2

Where:

nn =
None : Start/resume script
0 : Stop script
1 : Start/resume script
2 : Reinitialize and restart script

S - Set Motor Speed

Alias: MOTVEL	 HexCode: 03	 CANOpen id: 0x2002

Description:

In the Closed-Loop Speed mode, this command will cause the motor to spin at the de-
sired RPM speed. In Closed-Loop Position modes, this commands determines the speed
at which the motor will move from one position to the next. It will not actually start the
motion.

Syntax Serial:	 !S [cc] nn

Syntax Scripting:	 setcommand(_S, cc, nn)
		 setcommand(_MOTVEL, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min:-65535	 Max: 65535

Where:

cc = Motor channel
nn = Speed value in RPM

Example:

!S 2500 : set motor 1 position velocity to 2500 RPM

STT - STO Self-Test

Alias: -	 HexCode: 70	 CANOpen id: -

Description:

With this command the STO Self-Test process is executed in order to check whether
there is a fault. This process is applicable only on motor controllers with STO circuit im-

Commands Reference

230	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

plemented on their board. The result of the test is taken back using the STT query. Along
with the STO self-test an extra test is also taken place in order to detect whether either
of the power MOSFETs are shorted (so damaged) or not. This test takes place even if the
STO feature is disabled and during power-up. In case of STO fault the Respective STO
Fault bit in the Fault Flags is set. The STO fault is triggered when:

•	 Any of the transistors or other component of the STO circuit is damaged.
•	 The respective jumper is placed on the board.

In case of MOSFET fault the MOSFail and Estop bits in fault flags and the FETs Off bit in
status flags are set. This fault is cleared only when the STT runs again and the MOSFET
failure goes away.

Syntax Serial: !STT

Syntax Scripting: setcommand(_STT, 1)

Number of Arguments: 0

SX - Next Velocity

Alias: NXTVEL	 HexCode: 17	 CANOpen id: 0x2014

Description:

This command is used in Position Count mode. It is similar to S except that it stores a ve-
locity value in a buffer. This value will become the next velocity the controller will use and
becomes active upon reaching a previous desired position. If omitted, the command will
be chained using the last used velocity value. See Position Command Chaining in manual.

Syntax Serial:	 !SX cc nn

Syntax Scripting:	 setcommand(_SX, cc, nn)
		 setcommand(_NXTVEL, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: -500000	 Max: 500000

Where:

cc = Motor channel
nn = Velocity value

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 231

VAR - Set User Variable

Alias: VAR	 HexCode: 06	 CANOpen id: 0x2005

Description:

This command is used to set the value of user variables inside the controller. These vari-
ables can be then read from within a user MicroBasic script to perform specific actions.
The total number of variables depends on the controller model and can be found in the
product datasheet. Variables are signed 32-bit integers.

Syntax Serial:	 !VAR nn mm
Syntax Scripting:	 setcommand(_VAR, nn, mm)

		 setcommand(_VAR, nn, mm)

Number of Arguments: 2

Argument 1: VarNbr	
	 Min: 1	 Max: Total nbr of User Variables

Argument 2: Value	 Type: Signed 32-bit

	 Min: -2147M	 Max: 2147M

Where:

nn = Variable number
mm = Value

DS402 Runtime Commands

Runtime commands created to support DS402 specification are described below:

TABLE 15-2.

Command Arguments Description

CW Channel Value Control Word (DS402)

FEW Element Value Following Error Window (DS402)

FET Element Value Following Error Time Out (DS402)

HMD Channel Value Homing Method (DS402)

HSP Element Value Homing Speed (DS402)

INT Element Value Interpolation Time Period (DS402)

MSL Element Value Max Motor Speed (DS402)

PAC Channel Value Profile Acceleration (DS402)

PDC Channel Value Profile Deceleration (DS402)

PLT Element Value Software Position Limit (DS402)

POF Channel Value Position Offset (DS402)

POS Channel Value Target Position (DS402)

PSP Channel Value Profile Velocity (DS402)

ROM Channel Value Modes of Operation (DS402)

SPE Channel Value Target Velocity (DS402)

SAC Element Value Velocity Acceleration (DS402)

Commands Reference

232	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Command Arguments Description

SDC Element Value Velocity Deceleration (DS402)

SPC Channel Value Target Profile Velocity (DS402)

SPL Element Value Velocity Min/Max Amount (DS402)

TC Channel Value Target Torque (DS402)

TOF Channel Value Torque Offset (DS402)

TSL Channel Value Torque Slope (DS402)

VOF Channel Value Velocity Offset (DS402)

CW – Control Word (DS402)

Alias: CW	 HexCode: 56	 CANOpen id: 0x6040

Description:

This command controls the Power Drive System-Finite State Automation (PDS-FSA),
which is the state machine as defined by the DS402 standard. Bits 9, 6, 5, and 4 of the
ControlWord are operation mode specific. The halt function (bit 8) behavior is operation
mode specific. If the bit is 1, the commanded motion shall be interrupted (the motor will
start slowing down until it stops), after releasing the halt function, the commanded motion
shall be continued if possible, see Table 15-5.

TABLE 15-3. Control Word Mapping

15 11 10 9 8 7 6 4 3 2 1 0

R R OMS H FR OMS EO QS EV SO

MSB LSB

R  Reserved, OMS  Operation mode specific, H  Halt, FR  Fault reset,
EO  Enable operation QS  Quick stop, EV  Enable voltage, and SO  Switch on

TABLE 15-4. Command Coding

Command
Bits of the Control Word

Transition
Bit 7 Bit 3 Bit 2 Bit 1 Bit 0

Shutdown 0 X 1 1 0 2,6,8

Switch On 0 0 1 1 1 3

Switch On + Enable Operation 0 1 1 1 1 3+4

Disable Voltage 0 X X 0 X 7,9,10,12

Quick Stop 0 X 0 1 X 7,10,11

Disable Operation 0 0 1 1 1 5

Enable Operation 0 1 1 1 1 4,16

Fault Reset 0->1 X X X X 15

TABLE 15-5. Halt bit (bit 8)

Bit Value Definition

8
0 Positioning shall be executed or continued

1
Axis shall be stopped. Slow down on quick stop ramp (EDEC) and stay in operation
enabled

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 233

Profile Position Mode

TABLE 15-6. Control Word Mapping in Profile Position Mode

15 10 9 8 7 6 5 4 3 0

see Table
15-3

Reserved Halt
see

Table 15-3
Abs/rel

Change Set
Immediately

New Set
Point

see Table 15-3

MSB LSB

In Profile Position Mode the operation specific bits are mapped in Table 15-7. With bits 4
and 5, user can define when the command for next Position (0x607A - POS) will be pro-
cessed. Bit 6 defines whether the command is absolute or relative to the current position.

TABLE 15-7. Definition of Bits 4, 5, 6, and 9 in Profile Position Mode

Bit 5 Bit 4 Definition

1 0->1 Next positioning shall be started immediately

0 0->1
Positioning with the current profile velocity up to the current set-point shall be pro-
ceeded and then next positioning shall be applied

Bit Value Definition

6
0 Target position shall be an absolute value

1
Target position shall be a relative value. Positioning moves shall be performed relative
to the preceding (internal absolute) target position

Velocity Mode

TABLE 15-8. Control Word Mapping in Velocity Mode

15 9 8 7 6 5 4 3 0

see Table 15-3 Halt
see Table

15-3
Reference

Ramp
Unlock Ramp Enable Ramp

see Table
15-3

MSB LSB

In Velocity Mode the operation specific bits are mapped on Table 15-9. With bits 4, 5 and
6, user can configure the available ramp related options as shown in Table 15-9.

TABLE 15-9a Definition of Bits 4, 5, and 6 in Velocity Mode

Bit Value Definition

4
0

Motor shall be halted. Slow down on quick stop ramp (EDEC) and stay in operation en-
abled

1 Velocity demand value shall accord with ramp output value

5
0 Ramp output value shall be locked to current output value

1 Ramp output value shall follow ramp input value

6
0 Ramp input value shall be set to zero

1 Ramp input value shall accord with ramp reference

Note: Bit 4 has got higher priority than bit 5.

Commands Reference

234	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Homing Mode

TABLE 15-9b. control word mapping in homing mode

15 10 9 8 7 6 5 4 3 0

see Table 15-8 Halt see Table 15-8 Reserved Reserved Start Homing see Table 15-8

MSB LSB

In Homing Mode, the operation specific bits are mapped in Table 15-9b. With bit 4 the the
homing mode will be started and with bit 8 it will be halted.

TABLE 15-9c. Definition of bit 8

Bit Value Definition

4 0 Do not start homing procedure

1 Start or continue homing procedure

8 0 The motion shall be executed or continued

1 Axis shall be stopped according to the halt option code (605Dh)

Other Modes

Those modes use some bits of the controlword. Table 15-10 shows the structure of the
controlword. Table 15-11 defines the values for bit 8 of the controlword.

TABLE 15-10. Controlword for profile torque mode

15� 9 8 7 6� 4 3� 0

See Table 15-3 Halt See Table 15-3 reserved See Table 15-3

MSB LSB

TABLE 15-11. Definition of bit 8

Bit Value Definition

8 0 The motion shall be executed or continued

1 Axis shall be stopped according to the halt option code (605Dh)

Note: At cyclic synchronous modes Halt function is not active

Syntax Serial: !CW cc nn

Syntax Scripting: SetCommand(_CW, cc, nn)

Arguments: 2

Argument 1: Channel

			 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Argument 2: Value		

			 Type: Unsigned 16-bit

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 235

Where:

cc = Motor channel

nn = Control word value

FEW - Following Error Window (DS402)

Alias: FEW	 HexCode:99 CanOpen id: 0x6065

Description:

This command indicates the configured range of the tolerated position values symmet-
rically to the position demand value. If the position actual value is out of the following
error window, a following error occurs. If the value of the following error window is FFFF
FFFFh, the following control is disabled. Based on DS402 standard this command is only
applicable is position modes.

Syntax Serial: !FEW cc nn

Syntax Scripting: SetCommand(_FEW, cc, nn)

Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

	 Min: 1		 Max: Total of motors

Argument 2: Value	 Type: Unsigned 32-bit

Where:

cc = Motor channel

nn = Following Error Window (counts)

FET - Following Error Time Out (DS402)

Alias: FET	 HexCode:9A 	 CanOpen id: 0x6066

Description:

This command shall indicate the configured time for a following error condition, after that
the bit 13 of the statusword shall be set to 1. When the following error occurs, the control-
ler goes to quick stop operation mode. The value is given in ms.

Syntax Serial: !FET cc nn

Syntax Scripting: SetCommand(_FET, cc, nn)

Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

Commands Reference

236	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

	 Min: 1		 Max: Total of motors

Argument 2: Value	 Type: Unsigned 16-bit

Where:

cc = Motor channel

nn = Following Error Time out (ms)

HMD – Homing Method (DS402)

Alias: - HexCode: AD CANOpen id: 0X6098

Description:

This parameter selects the Homing Method that will be used. Supported methods are 17-
30 and 35. For more details go to DS402 standard.

Syntax Serial: !HMD cc nn

Syntax Scripting: setcommand(_HMD, cc, nn)

Number of Arguments: 2

Argument 1: Channel

		 Min: 1 Max: Total Number of Motors

Argument 2: Homing Method number

		 Type: Unsigned 8-bit

		 Min: 0 Max: 255

Where:

cc = Motor Channel

nn =Homing Method

Example:

!HMD 1 18: Selects Homing Method 18 for Motor channel 1

HSP – Homing Speed (DS402)

Alias: - HexCode: AE CANOpen id: 0X6099

Description:

This parameter sets the speed that will be used during the homing procedure. Each chan-
nel has 2 speed settings. The first is the speed during search for Home switch and the
second is the speed during search for Index pulse (currently not supported).

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 237

Syntax Serial: !HSP cc nn

Syntax Scripting: setcommand(_HSP, cc, nn)

Number of Arguments: 2

Argument 1: Channel

		 Min: 1 Max: 2 * Total Number of Motors

Argument 2: Homing Speed (RPM)

		 Type: Unsigned 32-bit

		 Min: 0 Max: 20000

Where:

cc=

1: Homing speed during search for Home switch for ch1

2: Homing speed during search for Index pulse (currently not supported) for ch1

3: Homing speed during search for Home switch for ch2

4: Homing speed during search for Index pulse (currently not supported) for ch2

nn =Homing Speed

Example:

!HSP 1 200: Selects Homing Speed (search for Home Switch) 200 (RPM) for Motor
channel 1.

!HSP 3 250: Selects Homing Speed (search for Home Switch) 250 (RPM) for Motor
channel 2.

INT - Interpolation Time Period (DS402)

Alias: INT	 HexCode:9C 	 CanOpen id: 0x60C2

Description:

This command indicates the configured interpolation cycle time. The interpolation time
period value is given in (interpolation time base)x10^(interpolation time index) s(seconds).
The interpolation time index is dimensionless. The default value of the interpolation time is
0.001 s (1 millisecond, meaning Interpolation Time Base = 1 and Interpolation Time Index
= -3).

Syntax Serial: !INT ee nn

Syntax Scripting: SetCommand(_INT, ee, nn)

Arguments: 2

Argument 1: Element Type: Unsigned 8-bit

Commands Reference

238	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Min: 1 Max: 2 × Total number of motors

Argument 2: Value Type:	 Interpolation Time Base: Unsigned 8 bits

			 Min: 0 Max: 255

			 Interpolation Time Index: Signed 8 bits

			 Min: -3 Max: 7

Where:

ee =

1: nn = Interpolation time base channel 1

2: nn = Interpolation time index channel 1

3: nn = Interpolation time base channel 2

4: nn = Interpolation time index channel 2

…

2 × (m - 1) + 1: nn = Interpolation time base channel m.

2 × (m - 1) + 2: nn = Interpolation time index channel m.

MSL - Max Motor Speed (DS402)

Alias: MSL HexCode: 66 CanOpen id: 0x6080

Description:

This command indicate the configured maximal allowed speed for the motor in either di-
rection. The value is given in rotations per minute (r/min).

Syntax Serial: !MSL cc nn

Syntax Scripting: SetCommand(_MSL, cc, nn)

Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

			 Min: 1 Max: Total of motors

Argument 2: Value Type: Signed 32-bit

Where:

cc = Motor channel

nn = Speed command in RPM

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 239

PAC – Profile Acceleration (DS402)

Alias: PAC	 HexCode: 5E	 CANOpen id: 0x6083

Description:

This command is used to set the configured acceleration in 10×RPM/second.

Syntax Serial: !PAC cc nn

Syntax Scripting: SetCommand(_PAC, cc, nn)

Arguments: 2

Argument 1: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Argument 2 Value			 Type: Unsigned 32-bit

Where:

cc = Motor channel

nn = Profile acceleration in 10×RPM/second

PDC – Profile Deceleration (DS402)

Alias: PDC	 HexCode: 5F	 CANOpen id: 0x6084

Description:

This command is used to set the configured deceleration in 10×RPM/second.

Syntax Serial: !PDC cc nn

Syntax Scripting: SetCommand(_PDC, cc, nn)

Arguments: 2

Argument 1: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Argument 2: Value		 Type: Unsigned 32-bit

Where:

cc = Motor channel

nn = Profile deceleration in 10×RPM/second

Commands Reference

240	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

PLT - Software Position Limit (DS402)

Alias: PLT	 HexCode:9D 	 CANOpen id: 0x607D

Description:

This command indicates the configurated maximal and minimal software position limits.
These parameters define the absolute position limits for the position demand value and
the position actual value. Every new target has been checked against these limits. To dis-
able the software position limits, the min position limit (1st element) and the max position
limit (2nd element) shall be set to 0. The positions limits is given in same position units as
the target position.

Syntax Serial: !PLT ee nn

Syntax Scripting: SetCommand(_PLT, ee, nn)

Arguments: 2

Argument 1: Element 	 Type: Unsigned 8-bit

	 Min: 1 		 Max: 2 × Total number of motors

Argument 2: Value	 Type: Unsigned 8-bit or Signed 8-bit

Where:

ee =

1: Minimum Position Limit channel 1

2: Maximum Position Limit channel 1

3: Minimum Position Limit channel 2

4: Maximum Position Limit channel 2

…

2 × (m - 1) + 1: Minimum Position Limit channel m.

2 × (m - 1) + 2: Maximum Position Limit channel m.

where m = number of motor

POF – Position Offset

Alias: - 		 HexCode: B0 	 CANOpen id: 0x60B0

Description:
This runtime command is used to set an offset in the position command. In relative posi-
tion modes the allowed offset values are between -1000 and 1000.

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 241

Syntax Serial: !POF cc nn

Syntax Scripting: setcommand (_POF, cc, nn)

Number of Arguments: 2

Argument 1: Motor		 Type: Unsigned 8-bits

 		 Min: 1 Max: Total Number of Motors

Argument 2: Position Offset	 Type: Signed 32-bit
 	 Min: -2,000,000,000 Max: 2,000,000,000 Default: 0

Where:
cc = Channel
nn = Position counts

Example:
!POF 1 230000: Set motor channel 1 position offset to 230000.

POS – Target Position (DS402)

Alias: POS	 HexCode: 5C	 CANOpen id: 0x607A

Description:

This command is used to set the commanded position that the drive should move to in
position profile mode using the current settings of motion control parameters such as ve-
locity, acceleration, deceleration, motion profile type etc. The value is interpreted as abso-
lute or relative depending on the abs/rel flag in the Control Word. Take into consideration
that this command is active only when DS402 mode is enabled.

Syntax Serial	 !POS cc nn

Syntax Scripting	 SetCommand(_POS, cc, nn)

Arguments: 2			

Argument 1: Channel		 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of motors

Argument 2: Value		 Type: Signed 32-bit

Where:

cc = Motor channel

nn = Target position

PSP – Profile Velocity (DS402)

Alias: PSP	 HexCode: 5D	 CANOpen id: 0x6081

Description:

This command is used to set the velocity in RPM, normally attained at the end of the ac-
celeration ramp during a profiled motion and is valid for both directions of motion.

Commands Reference

242	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial: !PSP cc nn

Syntax Scripting: SetCommand(_PSP, cc, nn)

Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Argument 2: Value		 Type: Unsigned 16-bit

Where:

cc = Motor channel

nn = Profile velocity

ROM – Modes of Operation (DS402)

Alias: ROM	 HexCode: 5A	 CANOpen id: 0x6060

Description:

This command configures the modes of operation.

Syntax Serial: !ROM cc nn

Syntax Scripting:	 SetCommand(_ROM, cc, nn)

Arguments: 2

Argument 1: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Argument 2: Value		 Type: Signed 8-bit

Where

cc = Motor channel

nn = Modes of operation (see the table below)

TABLE 15-12. Operation Modes

Value Definition Roboteq Operation Mode

-4¹ Velocity Mode Closed Loop Speed Position

-31 Profile Velocity Mode Closed Loop Speed Position

-21 Profile Position Mode Closed Loop Position Tracking Mode²

-11 Profile Position Mode Closed Loop Position Relative Mode2

0 No Mode Open Loop Mode

1 Profile Position Mode Closed Loop Count Position Mode

2 Velocity Mode Closed Loop Speed Mode

3 Profile Velocity Mode Closed Loop Speed Mode

4 Torque Profile Mode Closed Loop torque Mode

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 243

Value Definition Roboteq Operation Mode

8 Cyclic Synchronous Position Mode Closed Loop Count Position Mode

9 Cyclic Synchronous Velocity Mode Closed Loop Speed Mode

10 Cyclic Synchronous Torque Mode Closed Loop Torque Mode

¹Roboteq Specific Modes
2Not all Profile Position features can be supported with this mode.

RST – Reset Controller

Alias: - 		 HexCode: 23 	 CANOpen id: 0x2021

Description:

Initiating this command resets the controller, mirroring the effects of a power cycle:
firmware reinitializes, runtime variables clear, and temporary settings are lost. Exercise
caution due to these substantial impacts. The command is similar to the %RESET mainte-
nance command.

Syntax Serial: !RST

Syntax Scripting: setcommand(_EX, 1)

setcommand(_ESTOP, 1)

Number of Arguments: 0

S16 – Target Velocity (DS402)

Alias: MOTVEL	 HexCode: 61	 CANOpen id: 0x6042

Description:

Sets the required velocity of the system in RPM. Positive values shall indicate forward
direction and negative values shall indicate reverse direction. It is applicable to velocity
mode.

Syntax Serial:	 !S16 cc, nn

Syntax Scripting:	 SetCommand(_S16, cc, nn)

		 SetCommand(_MOTVEL, cc, nn)

Arguments: 2

Argument 1: Channel		 Type: Unsigned 8-bit

Min: 1				 Max: Total number of motors

Argument 2: Value		 Type: Signed 16-bit

Min: -500000			 Max: 500000

Where:

Commands Reference

244	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

cc = Motor channel

nn = Target velocity in RPM

SAC – Velocity Acceleration (DS402)

Alias: SAC	 HexCode: 58	 CANOpen id: 0x6048

Description:

This command configures the velocity acceleration.

Syntax Serial: !SAC ee nn

Syntax Scripting: SetCommand(_SAC, ee, nn)

Arguments: 2

Argument 1: Element		 Type: Unsigned 8-bit

Min: 1				 Max: 2 × Total number of motors

Argument 2: Value		 Type: Unsigned 32-bit

Where:

ee =

1: Delta speed in 10×RPM for channel 1

2: Delta time in seconds for channel 1

3: Delta speed in 10×RPM for channel 2

4: Delta time in seconds for channel 2

…

2 × (m - 1) + 1: Delta speed in 10×RPM for channel m.

2 × (m - 1) + 1: Delta time in seconds for channel m.

nn = Delta speed/time

SDC – Velocity Deceleration (DS402)

Alias: SDC	 HexCode: 59	 CANOpen id: 0x6049

Description:

This command configures the velocity deceleration.

Syntax Serial: !SDC ee nn

Syntax Scripting: SetCommand(_SDC, ee, nn)

Arguments: 2

Argument 1: Element		 Type: Unsigned 8-bit

	 Min: 1		 Max: 2 × Total number of motors

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 245

Argument 2: Value		 Type: Unsigned 32-bit

Where:

ee =

1: Delta speed in 10×RPM for channel 1

2: Delta time in seconds for channel 1

3: Delta speed in 10×RPM for channel 2

4: Delta time in seconds for channel 2

…

2 × (m - 1) + 1: Delta speed in 10×RPM for channel m.

2 × (m - 1) + 1: Delta time in seconds for channel m.

nn = Delta speed/time

SPC - Target Profile Velocity (DS402)

Alias: SPC	 HexCode: 66 	 CanOpen id: 0x60FF

Description:

Sets the required velocity of the system in RPM. Positive values shall indicate forward di-
rection and negative values shall indicate reverse direction. This command is applicable to
profile velocity and cyclic synchronous velocity modes.

Syntax Serial: !SPC cc nn

Syntax Scripting: SetCommand(_SPC, cc, nn)

Arguments: 2

Argument 1: Channel	 Type: Unsigned 8-bit

	 Min: 1		 Max: Total of motors

Argument 2: Value	 Type: Signed 32-bit

Where:

cc = Motor channel

nn = Speed command in RPM

SPL – Velocity Min/Max Amount (DS402)

Alias: SPL	 HexCode: 57	 CANOpen id: 0x6046

Description:

This command configures the minimum and maximum amount of velocity in RPM. The
vl velocity max amount is mapped internally to the vl velocity max positive and vl velocity

Commands Reference

246	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

max negative values. The vl velocity min amount is be mapped internally to the vl velocity
min positive and vl velocity min negative values as shown in Figure 15-1. It is applicable to
Velocity mode.

FIGURE 15-1. Velocity Min Max Amount

Syntax Serial: !SPL ee nn

Syntax Scripting: SetCommand(_SPL, ee, nn)

Arguments: 2

Argument 1: Eelment		 Type: Unsigned 8-bit

	 Min: 1		 Max: 2 × Total number of motors

Argument 2: Value		 Type: Unsigned 32-bit

Where:

ee =

1: Min amount for channel 1

2: Max amount for channel 1

3: Min amount for channel 2

4: Max amount for channel 2

…

2 × (m - 1) + 1: Min amount for channel m.

2 × (m - 1) + 2: Max amount for channel m.

nn = Velocity max/min amount

TC – Target Torque (DS402)

Alias: TC	 HexCode: 5B	 CANOpen id: 0x6071

Description:

This command configures the target torque command, applicable when the controller op-
erates in torque mode. Its value is expressed in thousandths of rated torque, which means
that a torque command of 1000 will drive the motor up to the rated torque. Beware that in

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 247

order to have correct results, the configuration commands nominal current (NOMA) and
torque constant (TNM) must be set appropriately.

Syntax Serial: !TC cc nn

Syntax Scripting: SetCommand(_TC, cc, nn)

Arguments: 2

Argument 1: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Argument 2: Value		 Type: Signed 16-bit

Where:

cc = Motor channel

nn = Torque input value in thousandths of rated torque

TOF – Torque Offset

Alias: - 	 HexCode: B2 	 CANOPEN id: 0x60B2

Description:
This runtime command is used to set an offset in the commanded torque. Commanded
torque could be either directly from user (in torque mode), or produced from speed or
position control loops. The value is in miliNm (Nm * 1000). Beware in order to have correct
values make sure to have configured appropriately configuration command TNM (torque
constant).

Syntax Serial: !TOF cc nn

Syntax Scripting: setcommand (_TOF, cc, nn)

Number of Arguments: 2

Argument 1: Motor Type: Unsigned 8-bits

 Min: 1 Max: Total Number of Motors

Argument 2: Toque Offset Type: Signed 32-bit

 Min: -2,000,000,000 Max: 2,000,000,000 Default: 0

Where:

cc = Channel

nn = Torque offset in Nm * 1000.

Example:

!TOF 1 300: Set motor channel 1 torque offset to 0.3 Nm.

Commands Reference

248	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TSL – Torque Slope (DS402)

Alias: TSL	 HexCode: 60	 CANOpen id: 0x6087

Description:

This command is used to set the rate of change of command. Beware in order to have
correct values make sure to have configured appropriately configuration command TNM.

Syntax Serial: !TSL cc nn

Syntax Scripting: SetCommand(_TSL, cc, nn)

Arguments: 2

Argument 1: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: otal number of motors

Argument 2: Value		 Type: Unsigned 32-bit

Where:

cc = Motor channel

nn = Torque slope in (miliNm*10)/ sec.

VOF – Velocity Offset

Alias: - HexCode: B1 CANOPEN id: 0x60B1	

Description:

This runtime command is used to set an offset in the velocity command. Velocity
command could be either directly set from user, in speed mode operation, or produced
from position control loop.

.

Syntax Serial: !VOF cc nn

Syntax Scripting: setcommand (_VOF, cc, nn)

Number of Arguments: 2

Argument 1: Motor Type: Unsigned 8-bits

 Min: 1 Max: Total Number of Motors

Argument 2: Velocity Offset Type: Signed 32-bit

 Min: -2,000,000,000 Max: 2,000,000,000 Default: 0

Where:

cc = Channel

nn = Velocity offset in RPM

Example:

!VOF 1 250: Set motor channel 1 velocity offset to 250 RPM.

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 249

Runtime Queries
Runtime queries can be used to read the value of real-time measurements at any time
during the controller operation. Real-time queries are very short commands that start with
“?” followed by one to three letters. In some instances, queries can be sent with or with-
out a numerical parameter.

Without parameter, the controller will reply with the values of all channels. When a nu-
merical parameter is sent, the controller will respond with the value of the channel select-
ed by that parameter.

Example:

 	 Q:?T
R: T=20:30:40

	 Q: ?T2
R: T=30

All queries are stored in a history buffer that can be made to automatically recall the
past 16 queries at a user-selectable time interval. See “Query History Commands” on
page 295.

Routine queries can be sent from within a MicroBasic Script using the getvalue() function.

TABLE 15-13. Runtime Queries

Command Argument Description

A Channel Read Motor Amps

AI InputNbr Read Analog Inputs

AIC InputNbr Read Analog Input after Conversion

ANG Channel Read Rotor Angle

ASI Channel Read Raw Sin/Cos sensor

B VarNbr Read User Boolean Variable

BA Channel Read Battery Amps

BCR Channel Read Internal Sensor Count Relative

BRK Channel Read Brake Override status

BMC SensorValue Read BMS State Of Charge in AmpHours

BMF SensorValue Read BMS status flags

BMS SensorValue Read BMS switch states

BS Channel Read Internal Sensor Motor Speed in RPM

BSC SensorNumber Read Battery State of Charge in percentage

BSR Channel Read Internal Sensor Motor Speed as 1/1000 of
Max RPM

C Channel Read Encoder Counter Absolute

CAN Element Read Raw CAN frame

CB Channel Read Absolute Internal Sensor Counter

CD None Read Raw Redirect Received Frames Count

CEC Element CAN Error Counter

CF None Read Raw CAN Received Frames Count

Commands Reference

250	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TABLE 15-13. Runtime Queries

Command Argument Description

CHS Channel CAN Consumer Heartbeat Status

CIA Channel Read Converted Analog Command

CIG PID Channel Gain Read Current Integral Gains

CIP Channel Read Internal Pulse Command

CIS Channel Read Internal Serial Command

CL Group Read RoboCAN Alive Nodes Map

CPG PID Channel Gain Read Current Proportional Gains

CR Channel Read Encoder Count Relative

CSR Channel Read Relative SSI Sensor Counter

CSS Channel Read Absolute SSI Sensor Counter

D None Read Digital Inputs

DI InputNbr Read Individual Digital Inputs

DDT Element Read Raw Redirect Received Frame

DG PID Channel Gain Read PID Derivative Gains

DO None Read Digital Output Status

DPA Channel Read Motor DC/Peak Amps

DR Channel Read Destination Reached

E Channel Read Closed Loop Error

F Channel Read Feedback

FC Channel Read FOC Angle Adjust

FLW SensorNumber Read Flow Sensor Counter

FF None Read Fault Flags

FID None Read Firmware ID

FIN None Read Firmware ID (numerical)

FM Channel Read Runtime Status Flag

FS None Read Status Flags

HS Channel Read Hall Sensor States

ICL NodeId Is RoboCAN Node Alive

IG PID Channel Gain Read PID Integral Gains

LK None Read Lock status

M Channel Read Motor Command Applied

MA AmpsChannel Read Field Oriented Control Motor Amps

MCB SensorNumber Read Magsensor Markers Pattern

MCU None Microprocessor Usage

MGD SensorNumber Read Magsensor Track Detect

MGM SensorNumber Read Magsensor Markers

MGS SensorNumber Read Magsensor Status

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 251

TABLE 15-13. Runtime Queries

Command Argument Description

MGT Channel Read Magsensor Track Position

P Channel Read Motor Power Output Applied

PG PID Channel Gain Read PID Proportional Gains

PHA CurrentSensorNumber Read Phase Amps

PI InputNbr Read Pulse Inputs

PIC InputNbr Read Pulse Input after Conversion

S Channel Read Encoder Motor Speed in RPM

SCC None Read Script Checksum

SEC Channel Read Sensor Errors

SDT Element Read Raw Redirect Received Frame as string

SNA Channel Read Sensor Angle

SNS Motor Phase Number Sense Voltage

SR Channel Read Encoder Speed Relative

SS Channel Read SSI Sensor Motor Speed in RPM

SSR Channel Read SSI Sensor Speed Relative

STT Fault Indication STO Self-Test Result

T SensorNbr Read Temperature

TM Element Read Time

TR Channel Read Position Relative Tracking

TRN None Read Control Unit type and Controller Model

UID Element Read MCU Id

V SensorNumber Read Volts

VAR VarNumber Read User Integer Variable

A - Read Motor Amps

Alias: MOTAMPS	 HexCode: 00	 CANOpen id: 0x2100

Description:

Measures and reports the motor Amps, in Amps*10, for all operating channels. For brush-
less controllers this query reports the RMS value. Note that the current flowing through
the motors is often higher than this flowing through the battery.

Syntax Serial:	 ?A [cc]

Argument: 	 Channel	
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_A, cc)
		 result = getvalue(_MOTAMPS, cc)

Commands Reference

252	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Reply:

A = aa	 Type: Signed 16-bit	 Min: 0 	

Where:

cc = Motor channel
aa = Amps *10 for each channel

Example:

Q: ?A
R: A=100:200
Q: ?A 2
R: A=200

Note:

Single channel controllers will report a single value. Some power board units measure the Mo-
tor Amps and calculate the Battery Amps, while other models measure the Battery Amps and
calculate the Motor Amps. The measured Amps is always more precise than the calculated
Amps. See controller datasheet to find which Amps is measured by your particular model.

AI - Read Analog Inputs

Alias: ANAIN	 HexCode: 10	 CANOpen id: 0x2146

Description:

Reports the raw value in mV of each of the analog inputs that are enabled. Input that is
disabled will report 0. The total number of Analog input channels varies from one control-
ler model to another and can be found in the product datasheet.

Syntax Serial:	 ?AI [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Max Number of Analog Inputs

Syntax Scripting:	 result = getvalue(_AI, cc)
		 result = getvalue(_ANAIN, cc)

Reply:

AI=nn	 Type: Signed 16-bit	 Min: 0 	 Max: 5300

Where:

cc = Analog Input number
nn = Millivolt for each channel

AIC - Read Analog Input after Conversion

Alias: ANAINC	 HexCode: 23	 CANOpen id: 0x2147

Description:

Returns value of an Analog input after all the adjustments are performed to convert it to a
command or feedback value (Min/Max/Center/Deadband/Linearity). If an input is disabled,
the query returns 0. The total number of Analog input channels varies from one controller
model to another and can be found in the product datasheet.

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 253

Syntax Serial:	 ?AIC [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Total Number of Analog Inputs

Syntax Scripting:	 result = getvalue(_AIC, cc)
		 result = getvalue(_ANAINC, cc)

Reply:

AIC=nn	 Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Analog Input number
nn = Converted analog input value +/-1000 range

ANG - Read Rotor Angle

Alias: ANG	 HexCode: 42	 CANOpen id: 0x2132

Description:

On brushless controller operating in sinusoidal mode, this query returns the real time val-
ue of the rotor’s electrical angle of brushless motor. This query is useful for verifying trou-
bleshooting sin/cos and SPI/SSI sensors. Angle are reported in 0-511 degrees.

Syntax Serial:	 ?ANG [cc]

Argument:	 Channel
			 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_ANG, cc)

Reply:

ANG=nn	Type: Unsigned 16-bit	 Min: 0 	 Max: 511

Where:

cc = Motor channel
nn = Rotor electrical angle

ASI - Read Raw Sin/Cos sensor

Alias: ASI	 HexCode: 33	 CANOpen id:

Description:

Returns real time raw values of ADC connected to sin/cos sensors of each motor or the
real time values of the raw data reported by the SSI sensor of the motor. This query is
useful for verifying troubleshooting sin/cos sensors and SSI sensors.

Syntax Serial:	 ?ASI [cc]

Argument:	 Channel
		 Min: 1	 Max: 2 * Number of Motors

Commands Reference

254	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting:	 result = getvalue(_ASI, cc)

Reply:

ASI=nn	 Type: Unsigned 16-bit	 Min: 0 	 Max: 65535

Where:

cc =
1 : Sin input 1/SSI input 1
2 : Cos input 1
3 : Sin input 2/SSI input 2
4 : Cos input 2
nn = ADC value

B - Read User Boolean Variable

Alias: BOOL	 HexCode: 16	 CANOpen id: 0x2115

Description:

Read the value of boolean internal variables that can be read and written to/from within
a user MicroBasic script. It is used to pass boolean states between user scripts and a
microcomputer connected to the controller. The total number of user boolean variables
varies from one controller model to another and can be found in the product datasheet.

Syntax Serial:	 ?B [nn]

Argument:	 VarNbr
		 Min: 1	 Max: Total Number of Bool Variables

Syntax Scripting:	 result = getvalue(_B, nn)
		 result = getvalue(_BOOL, nn)

Reply:

B=bb	 Type: Boolean	 Min: 0 	 Max: 1

Where:

nn = Boolean variable number
bb = 0 or 1 state of the variable

BA - Read Battery Amps

Alias: BATAMPS	 HexCode: 0C	 CANOpen id: 0x210C

Description:

Measures and reports the Amps flowing from the battery in Amps * 10. Battery Amps are
often lower than motor Amps.

Syntax Serial:	 ?BA [cc]

Argument:	 Channel:
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_BA, cc)
		 result = getvalue(_BATAMPS, cc)

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 255

Reply:

BA=aa	 Type: Signed 16-bit	 Min: 0 	

Where:

cc = Motor channel
aa = Amps *10 for each channel

Example:

Q: ?BA
R: BA=100:200

Note:

Some controller models measure the Motor Amps and Calculate the Battery Amps, while
other models measure the Battery Amps and calculate the Motor Amps. The measured
Amps is always more precise than the calculated Amps. See controller datasheet to find
which Amps is measured by your particular model.

BCR - Read Internal Sensor Count Relative

Alias: BLRCNTR	 HexCode: 09	 CANOpen id: 0x2109

Description:

Returns the amount of Internal sensor (Hall, SinCos, Resolver) counts that have been
measured from the last time this query was made. Relative counter read is sometimes
easier to work with, compared to full counter reading, as smaller numbers are usually
returned. If the query is used via RoboCAN, the query will be refreshed by default every
20ms, reseting the counter. Therefore a second argument has been introduced dictating
the refresh rate.

Syntax Serial: ?BCR [cc, nn]

Arguments: 2 or 1

Argument 1:	 Channel

		 Min: 1	 Max: Total Number of Motors

Argument 2:	 Time in millisecond, refresh rate (only if used in RoboCAN).

BCR= nn,cc Type: Signed 32-bit Min: 2147M	Max: 2147M

Where:

cc=Motor channel
nn=value

Example:

?BCR 1: Ask for BCR for channel 1

@01?BCR 1 0: Ask from node 1 for BCR for channel 1 only once, the rate value is zero.

@02?BCR 1 100: Ask from node 2 for BCR for channel 1 with rate of 100ms.

Commands Reference

256	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

BMC - Read BMS State Of Charge in AmpHours

Alias: -	 HexCode: 4C	 CANOpen id: 0x2141

Description:

When one or more BMS10X0 are connected to the controller, this query reports the Bat-
tery’s State Of Charge in AmpHours, which is connected to the respective BMS10X0. If
only one BMS10X0 is connected to any pulse input this query will report the data of that
device, regardless which pulse input it is connected to. If more than one BMS10X0 is con-
nected to pulse inputs and these inputs are enabled and configured in BMS MultiPWM
mode, then the argument following the query is used to select the sensor.

Syntax Serial: ?BMC [cc]

Argument:	 SensorNumber

		 Min: None	 Max: Total Number of Pulse Inputs

Syntax Scripting: result = getvalue(_BMC, cc)

Reply:

BMC=nn Type: Unsigned 8-bit Min: 0 Max: 255

Where:

cc = (When only one sensor enabled)

None or 1 : Current BMS10X0

cc = (When several sensors enabled)

1 : BMS10X0 at pulse input 1

2 : BMS10X0 at pulse input 2

...

p : BMS10X0 at pulse input p

nn = AmpHours (Ah)

BMF - Read BMS status flags

Alias: -	 HexCode: 4D	 CANOpen id: 0x2142

Description:

When one or more BMS10X0 are connected to the controller, this query reports the
status flags of the respective BMS10X0. If only one BMS10X0 is connected to any pulse
input this query will report the data of that device, regardless which pulse input it is con-
nected to. If more than one BMS10X0 is connected to pulse inputs and these inputs are
enabled and configured in BMS MultiPWM mode, then the argument following the query
is used to select the sensor.

Syntax Serial: ?BMF [cc]

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 257

Argument:	 SensorNumber

		 Min: None	 Max: Total Number of Pulse Inputs

Syntax Scripting: result = getvalue(_BMF, cc)

Reply:

BMF = f1 + f2*2 + f3*4 + ... + fn*2^n-1 Type: Unsigned 8-bit Min: 0 Max: 255

Where:

cc = (When only one sensor enabled)

None or 1 : Current BMS10X0

cc = (When several sensors enabled)

1 : BMS10X0 at pulse input 1

2 : BMS10X0 at pulse input 2

...

p : BMS10X0 at pulse input p

and

f1 = Unsafe Temperature

f2 = Over or Under Voltage Error Set

f3 = Amp Trigger Set

f4 = Over Current Error Set

f5 = Short Load or Inv Charger

f6 = Bad State Of Health

f7 = Config Error

f8 = Internal Fault

BMS - Read BMS switch states

Alias: -	 HexCode: 4E	 CANOpen id: 0x2143

Description:

When one or more BMS10X0 are connected to the controller, this query reports the
switch states of the respective BMS10X0. If only one BMS10X0 is connected to any pulse
input this query will report the data of that device, regardless which pulse input it is con-
nected to. If more than one BMS10X0 is connected to pulse inputs and these inputs are
enabled and configured in BMS MultiPWM mode, then the argument following the query
is used to select the sensor.

Syntax Serial: ?BMC [cc]

Argument:	 SensorNumber

		 Min: None	 Max: Total Number of Pulse Inputs

Commands Reference

258	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting: result = getvalue(_BMC, cc)

Reply:

BMC = f1 + f2*2 + f3*4 + ... + fn*2^n-1 Type: Unsigned 8-bit Min: 0 Max: 255

Where:

cc = (When only one sensor enabled)

None or 1 : Current BMS10X0

cc = (When several sensors enabled)

1 : BMS10X0 at pulse input 1

2 : BMS10X0 at pulse input 2

...

p : BMS10X0 at pulse input p

and

f1 = Pack Switch

f2 = Load Switch

f3 = Charger Switch

f4 = Brake Resistor / Aux Switch

f5 = Reserved

f6 = Bluetooth Vcc switch

f7 = Reserved

f8 = Reserved

BRK - Read Brake Override Status

Alias: -		 HexCode: AB		 CANOpen id: 0x2161

Description:

Returns the Brake Override status.

Syntax Serial: ?BRK [cc]

Argument: Channel

		 Min: 1 Max: Total Number of Motors

Syntax Scripting: getvalue(_BRK, cc)

Reply:

BRK=nn Type: Unsigned 8-bit Min: 0 Max:2

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 259

Where:

nn =

0: Auto. Brake is controlled by Motor is On action.

1: Brake Release. Brake is released ignoring the Motor is On action.

2: Brake Engage. Brake is engaged ignoring the Motor is On action.

Example:

?BRK 1: Status of PWM Brake Override for channel 1

BS - Read Internal Sensor Motor Speed in RPM

Alias: BLSPEED	 HexCode: 0A	 CANOpen id: 0x210A

Description:

On brushless motor controllers, reports the actual speed measured using the motor’s In-
ternal sensors (Hall, SinCos, Resolver) as the actual RPM value. To report RPM accurately,
the correct number of motor poles must be loaded in the BPOL configuration parameter.

Syntax Serial:	 ?BS [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_BS, cc)
		 result = getvalue(_BLSPEED, cc)

Reply:

BS=nn	 Type: Signed 32-bit	 Min: -65535	 Max: 65535

Where:

cc = Motor channel
nn = Speed in RPM

BSC - Read BMS State of Charge in percentage

Alias: -	 HexCode: 50	 CANOpen id: 0x213A

Description:

When one or more BMS10X0 are connected to the controller, this query reports the Bat-
tery’s State Of Charge in percentage, which is connected to the respective BMS10X0. If
only one BMS10X0 is connected to any pulse input this query will report the data of that
device, regardless which pulse input it is connected to. If more than one BMS10X0 is con-
nected to pulse inputs and these inputs are enabled and configured in BMS MultiPWM
mode, then the argument following the query is used to select the sensor.

Syntax Serial: ?BSC [cc]

Argument: 	 SensorNumber

		 Min: None	 Max: Total Number of Pulse Inputs

Syntax Scripting: result = getvalue(_BSC, cc)

Commands Reference

260	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Reply:

BSC=nn Type: Unsigned 8-bit Min: 0 Max: 255

Where:

cc = (When only one sensor enabled)

None or 1 : Current BMS10X0

cc = (When several sensors enabled)

1 : BMS10X0 at pulse input 1

2 : BMS10X0 at pulse input 2

...

p : BMS10X0 at pulse input p

nn = State Of Charge (%)

BSR - Read Internal Sensor Motor Speed as 1/1000 of Max RPM

Alias: BLRSPEED	 HexCode: 0B	 CANOpen id: 0x210B

Description:

On brushless motor controllers, returns the measured motor speed, using the motor’s
Internal sensors (Hall, Sin/Cos, Resolver), as a ratio of the Max RPM configuration param-
eter. The result is a value of between 0 and +/-1000. Note that if the motor spins faster
than the Max RPM, the return value will exceed 1000. However, a larger value is ignored
by the controller for its internal operation. To report an accurate result, the correct number
of motor poles must be loaded in the BPOL configuration parameter.

Syntax Serial:	 ?BSR

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_BSR,)
		 result = getvalue(_BLRSPEED,)

Reply:

BSR=nn	Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

nn = Speed relative to max

Example:

Q: ?BSR
R: BSR=500: speed is 50%of the RPM value stored in the Max RPM configuration

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 261

C - Read Encoder Counter Absolute

Alias: ABCNTR	 HexCode: 04	 CANOpen id: 0x2104

Description:

Returns the encoder value as an absolute number. The counter is 32-bit with a range of
+/- 2147483648 counts.

Syntax Serial: ?C [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Encoders

Syntax Scripting:	 result = getvalue(_C, cc)
		 result = getvalue(_ABCNTR, cc)

Reply:

C=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Encoder channel number
nn = Absolute counter value

CAN - Read Raw CAN frame

Alias: CAN	 HexCode: 27	 CANOpen id:

Description:

This query is used in CAN-enabled controllers to read the content of a received CAN
frame in the RawCAN mode. Data will be available for reading with this query only after
a ?CF query is first used to check how many received frames are pending in the FIFO
buffer. When the query is sent without arguments, the controller replies by outputting all
elements of the frame separated by colons.

Syntax Serial:	 ?CAN [ee]

Argument:	 Element	
		 Min: 1	 Max: 10

Syntax Scripting:	 result = getvalue(_CAN, ee)

Reply:

CAN = dd1:dd2:dd3: ... :dd10	 Type: Unsigned 16-bit	 Min: 0 	 Max: 255

Where:

ee = Byte in frame

dd1 = Header

dd2= Bytecount
dd3 to dd10 = Data0 to data7

Commands Reference

262	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example:

Q: ?CAN
R: CAN=5:4:11:12:13:14:0:0:0:0
Q: ?CAN 3
R: CAN=11

CB - Read Absolute Internal Sensor Counter

Alias: BLCNTR	 HexCode: 05	 CANOpen id: 0x2105

Description:

On brushless motor controllers, returns the running total of Internal sensor (Hall, SinCos,
Resolver) transition value as an absolute number. The counter is 32-bit with a range of +/-
2147483648 counts.

Syntax Serial:	 ?CB [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_CB, cc)
		 result = getvalue(_BLCNTR, cc)

Reply:

CB=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Motor channel
nn = Absolute counter value

CD - Read Raw Redirect Received Frames Count

Alias: CD HexCode: 8E CANOpen id: -

Description:

This query is used to read the number of received Raw Redirect frames pending in the
FIFO buffer and copies the oldest frame into the read buffer, from which it can then be
accessed using the ?DDT or ?SDT queries. Sending ?CD again, copies the next frame into
the read buffer.

Syntax Serial: ?CD

Argument: None

Syntax Scripting: result = getvalue(_CD, 1)

Reply:

CD=nn Type: Unsigned 8-bit Min: 0 Max: 255

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 263

Where:

nn = Number of frames in receive queue

CEC – CAN Error Counter

HexCode: AC				 CANOPEN id:

Description:

Returns the CAN error counters. It contains Transmit error counter, Receive Error counter,
Last error code and Bus-off counter (number of buss-offs since boot)

•	 TEC: Increases by 1 or 8 according to the error and frame until it reaches 256. Then
the counter is reset, and the controller enters bus-off state.

•	 REC: Increases by 1 or 8 according to the error and frame until it reaches 127. Then
the counter is reset, and the controller enters bus-off state.

•	 LEC: 000: No Error

	 001: Stuff Error

	 010: Form Error

	 011: Acknowledgment Error

	 100: Bit recessive Error

	 101: Bit dominant Error

	 110: CRC Error

	 111: Set by software

•	 BUS-OFF: Every time there is a bus-off this counter increases by one. This value is
reset on boot.

Syntax Serial: ?CEC [cc]

Argument: Error counter/status

Syntax Scripting: getvalue(_CEC, cc)

cc=

1: TEC

2: REC

3:LEC

4: Bus-off Counter

Reply:

CEC=nn

	 Type: Unsigned 16-bit

	 Min: 0 Max:2

Commands Reference

264	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

nn =

Returns the error counter according to cc.

Example:

?CEC 1: Transmit error counter?

CEC=123 – Current number of Transmit errors is 123.

CF - Read Raw CAN Received Frames Count

Alias: CF	 HexCode: 28	 CANOpen id:

Description:

This query is used to read the number of received CAN frames pending in the FIFO buf-
fer and copies the oldest frame into the read buffer, from which it can then be accessed
using the ?CAN query. Sending ?CF again, copies the next frame into the read buffer. The
controller can buffer up to 16 CAN frames.

Syntax Serial:	 ?CF

Argument:	 None		

Syntax Scripting:	 result = getvalue(_CF, 1)

Reply:

CF=nn	 Type: Unsigned 8-bit	 Min: 0 	 Max: 16

Where:

nn = Number of frames in receive queue

CHS - CAN Consumer Heartbeat Status

Alias: - HexCode: 94 CANOpen id: -

Description:

Returns the the status of the respective consumer heartbeat channel. With CANOpen
enabled, there are 4 slots in order to monitor heartbeats. Their status can be checked with
this query.

Syntax Serial: ?CHS [cc]

Argument: Heartbeat Channel

Min: 1 		 Max: 4

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 265

Syntax Scripting: result = getvalue(_CHS, cc)

Reply:

CIA=nn Type: Unsigned 8-bit Min: 0 Max: 127

Where:

cc = Heartbeat channel

nn = Heartbeat Status:

0: Not configured

1: Pending (waiting for the first heartbeat message from node)

2: Active (node is sending heartbeat regularly)

127: Inactive (node stopped sending heartbeat)

CIA - Read Converted Analog Command

Alias: CMDANA	 HexCode: 1A	 CANOpen id: 0x2117

Description:

Returns the motor command value that is computed from the Analog inputs whether or
not the command is actually applied to the motor. The Analog inputs must be con-
figured as Motor Command. This query can be used, for example, to read the com-
mand joystick from within a MicroBasic script or from an external microcomputer,
even though the controller may be currently responding to Serial or Pulse command
because of a higher priority setting. The returned value is the raw Analog input value with
all the adjustments performed to convert it to a command (Min/Max/Center/Deadband/
Linearity).

Syntax Serial:	 ?CIA [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_CIA, cc)
		 result = getvalue(_CMDANA, cc)

Reply:

CIA=nn	 Type: Signed 32-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = Command value in +/-1000 range

Commands Reference

266	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

CIG – Read Current Integral Gains

Alias: -		 HexCode: A5		 CANOpen id: 0x2160

Description:

Reads the Current Integral Gains. The value is read as the gain multiplied by 10^4. This val-
ue is used for both flux and torque Integral gains.

Syntax Serial: ?CIG [cc]

Syntax Scripting: getvalue(_CIG, cc)

Number of Arguments: 1

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Reply:

CIG = aa Type: Unsigned 32-bit Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =

			 1: Flux Integral Gain

			 2: Torque Integral Gain

cc (dual channel) =

			 1: Flux Integral Gain for motor 1

			 2: Flux Integral Gain for motor 2

			 3: Torque Integral Gain for motor 1

			 4: Torque Integral Gain for motor 2

aa: Integral Gain*10.000

CIP - Read Internal Pulse Command

Alias: CMDPLS	 HexCode: 1B	 CANOpen id: 0x2118

Description:

Returns the motor command value that is computed from the Pulse inputs whether or
not the command is actually applied to the motor. The Pulse input must be configured
as Motor Command. This query can be used, for example, to read the command
joystick from within a MicroBasic script or from an external microcomputer, even
though the controller may be currently responding to Serial or Analog command because
of a higher priority setting. The returned value is the raw Pulse input value with all the ad-
justments performed to convert it to a command (Min/Max/Center/Deadband/Linearity).

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 267

Syntax Serial:	 ?CIP [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_CIP, cc)
		 result = getvalue(_CMDPLS, cc)

Reply:

CIP=nn	 Type: Signed 32-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = Command value in +/-1000 range

CIS - Read Internal Serial Command

Alias: CMDSER	 HexCode: 19	 CANOpen id: 0x2116

Description:

Returns the motor command value that is issued from the serial input or from a MicroBa-
sic script whether or not the command is actually applied to the motor. This query
can be used, for example, to read from an external microcomputer the command
generated inside MicroBasic script, even though the controller may be currently respond-
ing to a Pulse or Analog command because of a higher priority setting.

Syntax Serial:	 ?CIS [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_CIS, cc)
		 result = getvalue(_CMDSER, cc)

Reply:

CIS=nn	 Type: Signed 32-bit	 Min: -1000 	 Max: 1000

Where:

cc = channel
nn = command value in +/-1000 range

CL - Read RoboCAN Alive Nodes Map

Alias: CALIVE	 HexCode: 26	 CANOpen id:

Description:

With CL it is possible to see which nodes in a RoboCAN are alive and what type of device
is present at each node. A complete state of the network is represented in sixteen 32-
bit numbers. Within each 32-bit word are 8 groups of 4-bits. The 4-bits contain the node
information. E.g. bits 0-3 of first number is for node 0, bits 8-11 of first number is for node
2, bits 4-7 of second number is for node 5 and bits 12-15 of fourth number is for node 11,
etc.

Commands Reference

268	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial:	 ?CL nn

Argument:	 Group
		 Min: 1	 Max: 16

Syntax Scripting:	 result = getvalue(_CL, nn)
		 result = getvalue(_CALIVE, nn)

Reply:

CL=mm	Type: Unsigned 32-bit	 Min: 0 	 Max: 4194M

Where:

nn =

1 : nodes 0-3

2 : nodes 4-7

...

...

15 : nodes 120-123

16 : nodes 124-127

mm = 4 words of 4 bits. Each 4-bit word:

0b0000 : Inactive node

0b0001 : Active motor controller

0b0011 : Active magsensor

0b0101 : Active RIOX

0b0111 : Active BMS

0b1001 : Active OTS

0b1011 : Active FLW

CPG – Read Current Proportional Gains

Alias: -		 HexCode: A4		 CANOpen id: 0x215F

Description:

Reads the Current Proportional Gains. The value is read as the gain multiplied by 10^4.
This value is used for both flux and torque proportional gains.

Syntax Serial: ?CPG [cc]

Syntax Scripting: getvalue(_CPG, cc)

Number of Arguments: 1

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 269

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Reply:

CPG = aa Type: Unsigned 32-bit Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =

			 1: Flux Proportional Gain

			 2: Torque Proportional Gain

cc (dual channel) =

			 1: Flux Proportional Gain for motor 1

			 2: Flux Proportional Gain for motor 2

			 3: Torque Proportional Gain for motor 1

			 4: Torque Proportional Gain for motor 2

aa: Proportional Gain*10.000

CR - Read Encoder Count Relative

Alias: RELCNTR	 HexCode: 08	 CANOpen id: 0x2108

Description:

Returns the amount of counts that have been measured from the last time this query was
made. Relative counter read is sometimes easier to work with, compared to full counter
reading, as smaller numbers are usually returned.

Syntax Serial:	 ?CR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Encoders

Syntax Scripting:	 result = getvalue(_CR, cc)
		 result = getvalue(_RELCNTR, cc)

Reply:

CR=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147

Where:

cc = Motor channel
nn = Counts since last read using ?CR

Commands Reference

270	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

CSR - Read Relative SSI Sensor Counter

Alias: -	 HexCode: 6D	 CANOpen id: 0x213F

Description:

Returns the amount of counts that have been measured from the last time this query was
made. Relative counter read is sometimes easier to work with, compared to full counter
reading, as smaller numbers are usually returned.

Syntax Serial: ?CSR [cc]

Argument:	 Channel

		 Min: 1	 Max: Total Number of SSI Encoders

Syntax Scripting: result = getvalue(_CSR, cc)

Reply:

CSR=nn Type: Signed 32-bit Min: -2147M Max: 2147

Where:

cc = SSI sensor channel

nn = Counts since last read using ?CSR

CSS - Read Absolute SSI Sensor Counter

Alias: - HexCode: 6E CANOpen id: 0x213E

Description:

Returns the SSI encoder value as an absolute number. The counter is 32-bit with a range
of +/- 2147483648 counts.

Syntax Serial: ?CSS [cc]

Argument:	 Channel

	 	 Min: 1 Max: Total Number of SSI Encoders

Syntax Scripting: result = getvalue(_CSS, cc)

Reply:

CSS=nn Type: Signed 32-bit Min: -2147M Max: 2147

Where:

cc = SSI sensor channel

nn = Absolute counter value

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 271

D - Read Digital Inputs

Alias: DIGIN	 HexCode: 0E	 CANOpen id: 0x210E

Description:

Reports the status of each of the available digital inputs. The query response is a single
digital number which must be converted to binary and gives the status of each of the in-
puts. The total number of Digital input channels varies from one controller model to anoth-
er and can be found in the product datasheet.

Syntax Serial:	 ?D

Argument:	 None		

Syntax Scripting:	 result = getvalue(_D, 1)
		 result = getvalue(_DIGIN, 1)

Reply:

D=nn	 Type: Unsigned 32-bit	 	

Where:

nn = b1 + b2*2 + b3*4 + ... +bn*2^n-1

Example:

Q: ?D
R: D=17 : Inputs 1 and 5 active, all others inactive

DDT - Read Raw Redirect Received Frame

Alias: DDT HexCode: 8F CANOpen id: -

Description:

This query is used in Raw Redirect mode to read the content of a received Raw Redirect
frame. Data will be available for reading with this query only after a ?CD query is first
used to check how many received frames are pending in the FIFO buffer. When the query
is sent without arguments, the controller replies by outputting all elements of the frame
separated by colons.

Syntax Serial: ?DDT [ee]

Argument: Element

 Min: 1 Max: 64

Syntax Scripting: result = getvalue(_DDT, ee)

Reply:

DDT = dd1:dd2:dd3: ... :dd64 Type: Unsigned 8-bit Min: 0 Max: 255

Commands Reference

272	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

ee = Byte in frame

dd1 = byte size

dd2 to dd64 = data0 to data62

Examples:	Q: ?DDT

	 R: DDT=8:82:111:98:111:116:101:113

	 Q: ?DDT 3

	 R: DDT=111

DG – Read PID Derivative Gains

Alias: -		 HexCode: A3		 CANOpen id: 0x215E

Description:

Reads the PID’s Derivative Gains. The value is read as the gain multiplied by 10^6. This
value is used for both speed and position Derivative gains.

Syntax Serial: ?DG [cc]

Syntax Scripting: getvalue(_DG, cc)

Number of Arguments: 1

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Reply:

DG = aa Type: Unsigned 32-bit Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =

			 1: Speed Derivative Gain

			 2: Position Derivative Gain

cc (dual channel) =

			 1: Speed Derivative Gain for motor 1

			 2: Speed Derivative Gain for motor 2

			 3: Position Derivative Gain for motor 1

			 4: Position Derivative Gain for motor 2

aa: Derivative Gain*1.000.000

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 273

DI - Read Individual Digital Inputs

Alias: DIN	 HexCode: 0F	 CANOpen id: 0x2145

Description:

Reports the status of an individual Digital Input. The query response is a boolean value (0
or 1). The total number of Digital input channels varies from one controller model to anoth-
er and can be found in the product datasheet.

Syntax Serial:	 ?DI [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Total Number of Digital Inputs

Syntax Scripting:	 result = getvalue(_DI, cc)
		 result = getvalue(_DIN, cc)

Reply:

DI=nn	 Type: Boolean	 Min: 0 	 Max: 1

Where:

cc = Digital Input number
nn = 0 or 1 state for each input

Example:

Q: ?DI
R: DI=1:0:1:0:1:0
Q: ?DI 1
R: DI=0

DO - Read Digital Output Status

Alias: DIGOUT	 HexCode: 17	 CANOpen id: 0x2113

Description:

Reads the actual state of all digital outputs. The response to that query is a single number
which must be converted into binary in order to read the status of the individual output
bits. When querying an individual output, the reply is 0 or 1 depending on its status. The
total number of Digital output channels varies from one controller model to another and
can be found in the product datasheet.

Syntax Serial:	 ?DO

Argument:	 None		

Syntax Scripting:	 result = getvalue(_DO, 1)
		 result = getvalue(_DIGOUT, 1)

Reply:

DO=nn	 Type: Unsigned 16-bit	 Min: 0 	 Max: 65536

Where:

nn = d1 + d2*2 + d3*4 + ... + dn * 2^n-1

Commands Reference

274	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example:

Q: ?DO
R: DO=17 : Outputs 1 and 5 active, all others inactive

DPA - Read DC/Peak Amps

Alias: - HexCode: 6E CANOpen id: -

Description:

Applicable only for brushless controllers. Measures and reports the Peak Amps , in
Amps*10, for all operating channels.

Syntax Serial: ?DPA [cc]

Argument: 	 Channel

		 Min: 1	 Max: Total Number of Motors

Syntax Scripting: result = getvalue(_DPA, cc)

Reply:

DPA = aa Type: Signed 16-bit Min: 0

Where:

cc = Motor channel

aa = Amps *10 for each channel

Example:

Q: ?DPA

R: DPA=100:200

Q: ?DPA 2

R: DPA=200

DR - Read Destination Reached

Alias: DREACHED	 HexCode: 22	 CANOpen id: 0x211B

Description:

This query is used when chaining commands in Position Count mode, to detect that a
destination has been reached and that the next destination values that were loaded in the
buffer have become active. The Destination Reached bit is latched and is cleared once it
has been read.

Syntax Serial:	 ?DR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_DR, cc)
		 result = getvalue(_DREACHED, cc)

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 275

Reply:

DR=nn	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

cc = Motor channel
nn =
0 : Not yet reached
1 : Reached

E - Read Closed Loop Error

Alias: LPERR	 HexCode: 18	 CANOpen id: 0x2114

Description:

In closed-loop modes, returns the difference between the desired speed or position and
the measured feedback. This query can be used to detect when the motor has reached
the desired speed or position. In open loop mode, this query returns 0.

Syntax Serial:	 ?E [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_E, cc)
		 result = getvalue(_LPERR, cc)

Reply:

E=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Motor channel
nn = Error value

F - Read Feedback

Alias: FEEDBK	 HexCode: 13	 CANOpen id: 0x2110

Description:

Reports the value of the feedback sensors that are associated to each of the channels in
closed-loop modes. The feedback source can be Encoder, Analog or Pulse. Selecting the
feedback source is done using the encoder, pulse or analog configuration parameters. This
query is useful for verifying that the correct feedback source is used by the channel in the
closed-loop mode and that its value is in range with expectations.

Syntax Serial:	 ?F [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Commands Reference

276	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting:	 result = getvalue(_F, cc)
		 result = getvalue(_FEEDBK, cc)

Reply:

F=nn	 Type: Signed 32-bit	 Min: -2147M	 Max: 2147M

Where:

cc = Motor channel
nn = Feedback values

FC - Read FOC Angle Adjust

Alias: FC	HexCode: 47	 CANOpen id: 0x2135

Description:

Read in real time the angle correction that is currently applied by the Field Oriented algo-
rithm in order achieve optimal performance.

Syntax Serial:	 ?FC [cc]

Argument:	 Channel	
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_FC, cc)

Reply:

FC = nn	 Type: Signed 16-bit	 Min: -512 	 Max: 512

Where:

cc = Motor channel
nn = Angle correction

FLW - Read Flow Sensor Counter

Alias: -	 HexCode: 7B	 CANOpen id: 0x214A

Description:

When one or more FLW100 are connected to the controller, this query reports the count
measurements of X and Y axis in mm*10 of the respective FLW100. If only one FLW100
is connected to any pulse input this query will report the data of that device, regardless
which pulse input it is connected to. If more than one FLW100 is connected to pulse in-
puts and these inputs are enabled and configured in FlowSensor MultiPWM mode, then
the argument following the query is used to select the sensor.

Syntax Serial: ?FLW [cc]

Argument:	 SensorNumber

		 Min: 1	 Max: 2*Total Number of Pulse Inputs

Syntax Scripting: result = getvalue(_FLW, cc)

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 277

Reply:

FLW=nn Type: Signed 32-bit Min: -2147M Max: 2147M

Where:

cc = (When only one sensor enabled)

1 : X Counter

2: Y Counter

cc = (When several sensors enabled)

1 : X Counter of sensor at pulse input 1

2 : Y Counter of sensor at pulse input 1

3 : X Counter of sensor at pulse input 2

4 : Y Counter of sensor at pulse input 2

...

((p-1)*2)+1 : X Counter of sensor at pulse input p

((p-1)*2)+2 : Y Counter of sensor at pulse input p

nn = Distance in mm*10.

FF - Read Fault Flags

Alias: FLTFLAG	 HexCode: 15	 CANOpen id: 0x2112

Description:

Reports the status of the controller fault conditions that can occur during operation. The
response to that query is a single number which must be converted into binary in order to
evaluate each of the individual status bits that compose it.

Syntax Serial:	 ?FF

Argument:	 None		

Syntax Scripting:	 result = getvalue(_FF, 1)
		 result = getvalue(_FLTFLAG, 1)

Reply:

FS = f1 + f2*2 + f3*4 + ... + fn*2^n-1 Type: Unsigned 16-bit Min: 0 Max: 65535

Where:

TABLE 15-14. FF - Read Fault

Fault bit Fault Activated when

f1 OverHeat The measured temperatures go beyond the configured
limit. For more details see chapter “Temperature-Based
Protection” at section 7.

f2 OverVolt The measured voltages go beyond the configured limit.
For more details see chapter “Overvoltage Protection”
at section 7.

Commands Reference

278	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Fault bit Fault Activated when

f3 UnderVolt The measured voltages go below the configured limit.
For more details see chapter “Undervoltage Protection”
at section 7.

f4 Short A possible short has been detected. For more details
see chapter Short Circuit Protection at section 7.

f5 EStop The EX command has been sent or the emergency stop
action has been triggered. For more details see chapter
“Digital Inputs Configurations and Uses” at section 4
and chapter “EX – Emergency Stop” at section 15

f6 Motor/Sensor There is a sensor fault during runtime or motor sensor
setup. For more details see chapter “Sensor Error De-
tection” at section 8.

f7 MOSFail Either of the power MOSFETs is detected as damaged.
For more details see “Motor Deactivation in Case of
Output Stage Hardware Failure” at section 2.

f8 DefConfig Default configuration is loaded at startup. This could be
due to either corruption in flash memory or by powering
up a brand-new controller.

f9 STO Fault The STO circuit’s self-test routine returns a fault (it
happens also when either of the STO inputs is low,
while the other is high). For more details see “Motor
Deactivation in Case of Output Stage Hardware Failure”
at section 2.

Example:

Q: ?FF

R: FF=2 : Overvoltage fault

FID - Read Firmware ID

Alias: FID	 HexCode: 1E	 CANOpen id:

Description:

This query will report a string with the date and identification of the firmware revision of
the controller.

Syntax Serial:	 ?FID

Argument:	 None		

Syntax Scripting:	 result = getvalue(_FID, 1)

Reply:

FID=ss	 Type: String	 	

Where:

ss = Firmware ID string

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 279

Example:

Q: ?FID
R: FID=Roboteq v1.6 RCB500 05/01/2016

FIN - Read Firmware ID (numerical)

Alias: -	 HexCode: 3F	 CANOpen id: 0x2137

Description:

This query will report the version and the date of the firmware revision of the controller. If
only element 1 is queried then the version format will be 4 characters in which:

•	 1st character will be the major version

•	 2nd character will be the minor version

•	 3rd character will be the version variation (a, b, etc.)

•	 4th character will be the firmware status which is used for technical support
reasons.

Syntax Serial: ?FIN [ee]

Argument:	 Element

		 Min: None	 Max: 4

Syntax Scripting: result = getvalue(_FIN, ee)

Reply:

FID = nn Type: Unsigned 16-bit Min: 0

Where:

ee = Firmware Version Element

1: Version

2: Month

3: Day

4: Year

nn = Value.

FM - Read Runtime Status Flag

Alias: MOTFLAG	 HexCode: 30	 CANOpen id: 0x2122

Description:

Report the runtime status of each motor. The response to that query is a single number
which must be converted into binary in order to evaluate each of the individual status bits
that compose it.

Syntax Serial:	 ?FM [cc]

Commands Reference

280	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_FM, cc)
		 result = getvalue(_MOTFLAG, cc)

Reply:

FM = f1 + f2*2 + f3*4 + ... + fn*2n-1

	 Type: Unsigned 16-bit	 Min: 0 	 Max: 255

Where:

cc = Motor channel

TABLE 15-15. FM - Read Runtime Status Flag

Status bit Fault Activated when

f1 AmpLim The current is limited to the configured Current limit
(ALIM), since the command requires higher current or
I2T protection is triggered. For more details see chapters
“Current Limiting” and “I2T Protection” at section 7.

f2 Stall The stall detection method is triggered. For more details
see chapter “Stall Detection” at section 8.

f3 Loop Error The loop error detection method is triggered. For more
details see chapter “Closed Loop Error Protection” at
section 7.

f4 Quick Stop The QST command has been sent or the Quick Stop action
has been triggered. For more details see chapter “Digital
Inputs Configurations and Uses” at section 4 and chapter
“QST – Quick Stop” at section 15

f5 FwdLimit The Forward limit switch action has been triggered. For
more details see chapter “Digital Inputs Configurations and
Uses” at section 4.

f6 RevLimit The Reverse limit switch action has been triggered. For
more details see chapter “Digital Inputs Configurations and
Uses” at section 4.

f7 AmpTrig Amps trigger threshold has been reached. For more details
see “ATRIG - Amps Trigger Level” at section 15.

f8 FETs Off Power MOSFETs have been floated due to a specific
error. For more details see “Motor Deactivation in Normal
Operation” at section 2.

Example:

Q: ?FM 1
R: FM=6 : Motor 1 is stalled and loop error detected

Note:

f2, f3 and f4 are cleared when the next idle motor command is given (0 in case of speed
modes, equal to feedback in case of position modes). When f5 or f6 are on, the motor can
only be commanded to go in the reverse direction.

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 281

FS - Read Status Flags

Alias: STFLAG	 HexCode: 14	 CANOpen id: 0x2111

Description:

Report the state of status flags used by the controller to indicate a number of internal
conditions during normal operation. The response to this query is the single number for all
status flags. The status of individual flags is read by converting this number to binary and
look at various bits of that number.

Syntax Serial:	 ?FS

Argument:	 None

Syntax Scripting:	 result = getvalue(_FS, 1)
		 result = getvalue(_STFLAG, 1)

Reply:

FS = f1 + f2*2 + f3*4 + ... + fn*2^n-1 Type: Unsigned 16-bit Min: 0 Max: 65535

Where:

TABLE 15-16. FS - Read Status Flags

Status bit Fault Activated when

f1 Serial The motor command is given via a serial interface (RS232,
RS485, TCP, USB). For more details see chapter Input
Command Modes and Priorities at section 6.

f2 Pulse The motor command is given via a Pulse Input (R/C radio,
PWM, Frequency). For more details see chapter Input
Command Modes and Priorities at section 6

f3 Analog The motor command is given via a Analog Input. For more
details see chapter Input Command Modes and Priorities
at section 6.

f4 FETs Off All the power MOSFETs of the controller are floated.

f5 Stall There is stall error in either of the motor channels.

f6 At Limit There is forward or reverse limit triggered in either of the
motor channels.

f7 STO Both STO inputs are grounded. In that case STO is
triggered and the power circuit is deactivated.

f8 RunScript A script is running.

f9 Setup The motor/sensor setup process is executed.

HS - Read Hall Sensor States

Alias: HSENSE	 HexCode: 31	 CANOpen id: 0x2123

Description:

Reports that status of the hall sensor inputs. This function is mostly useful for trouble-
shooting. When no sensors are connected, all inputs are pulled high and the value 7 will

Commands Reference

282	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

be replied. For 60 degrees spaced Hall sensors, 0-1- 3-4- 6-7 are valid combinations, while
2 and 5 are invalid combinations. For 120 degrees spaced sensors, 1-2- 3-4- 5-6 are valid
combinations, while 0 and 7 are invalid combinations. In normal conditions, valid values
should appear at one time or the other as the motor shaft is rotated.

Syntax Serial:	 ?HS [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_HS, cc)
		 result = getvalue(_HSENSE, cc)

Reply:

HS= ha + 2*hb + 4*hc	 Type: Unsigned 8-bit	 Min: 0 	 Max: 7

Where:

cc = channel
ha = hall sensor A
hb = hall sensor B
hc = hall sensor C
Example:
Q: ?HS 1
R: HS=5 : sensors A and C are high, sensor B is low

Note:

Function not available on HBLxxxxx products

ICL - Is RoboCAN Node Alive

Alias: ICL	 HexCode: 46	 CANOpen id: 0x2134

Description:

This query is used to determine if specific RoboCAN node is alive on CAN bus.

Syntax Serial:	 ?ICL cc

Argument:	 NodeId
		 Min: 1	 Max: 127

Syntax Scripting:	 result = getvalue(_ICL, cc)

Reply:

ICL=nn	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

cc = Node Id
nn =
0 : Not present
1 : Alive

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 283

IG – Read PID Integral Gains

Alias: -		 HexCode: A2		 CANOpen id: 0x215D

Description:

Reads the PID’s Integral Gains. The value is read as the gain multiplied by 10^6. This value
is used for both speed and position integral gains.

Syntax Serial: ?IG [cc]

Syntax Scripting: getvalue(_IG, cc)

Number of Arguments: 1

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Reply:

IG = aa Type: Unsigned 32-bit Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =
			 1: Speed Integral Gain

			 2: Position Integral Gain

cc (dual channel) =
			 1: Speed Integral Gain for motor 1

			 2: Speed Integral Gain for motor 2

			 3: Position Integral Gain for motor 1

			 4: Position Integral Gain for motor 2

aa: Integral Gain*1.000.000

LK - Read Lock status

Alias: LOCKED	 HexCode: 1D	 CANOpen id: 0x2124

Description:

Returns the status of the lock flag. If the configuration is locked, then it will not be possi-
ble to read any configuration parameters until the lock is removed or until the parameters
are reset to factory default. This feature is useful to protect the controller configuration
from being copied by unauthorized people.

Syntax Serial:	 ?LK

Argument:	 None		

Commands Reference

284	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting:	 result = getvalue(_LK, 1)
		 result = getvalue(_LOCKED, 1)

Reply:

LK=ff	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

ff =
0 : unlocked
1 : locked

M - Read Motor Command Applied

Alias: MOTCMD	 HexCode: 01	 CANOpen id: 0x2101

Description:

Reports the command value that is being used by the controller. The number that is
reported will be depending on which mode is selected at the time. The choice of one
command mode vs. another is based on the command priority mechanism. In the Serial
mode, the reported value will be the command that is entered in via the RS232, RS485,
TCP or USB port and to which an optional exponential correction is applied. In the Analog
and Pulse modes, this query will report the Analog or Pulse input after it is being convert-
ed using the min, max, center, deadband, and linearity corrections. This query is useful
for viewing which command is actually being used and the effect of the correction that is
being applied to the raw input.

Syntax Serial:	 ?M [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_M, cc)
		 result = getvalue(_MOTCMD, cc)

Reply:

M=nn	 Type: Signed 32-bit	 Min: -2147M	 Max: 2147M

Where:

cc = Motor channel
nn = Command value used for each motor. 0 to +/-1000 range

Example:

Q: ?M
R: M=800:-1000
Q: ?M 1 R:
M=800

MA - Read Field Oriented Control Motor Amps

Alias: MEMS	 HexCode: 25	 CANOpen id: 0x211C

Description:

On brushless motor controllers operating in sinusoidal mode, this query returns the
Torque (also known as Quadrature or Iq) current, and the Flux (also known as Direct, or Id)
current. Current is reported in Amps x 10.

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 285

Syntax Serial:	 ?MA nn
Argument:	 AmpsChannel
		 Min: 1	 Max: 2 * Total Number of Motors

Syntax Scripting:	 result = getvalue(_MA, nn)
		 result = getvalue(_MEMS, nn)

Reply:

MA=mm	 Type: Signed 16-bit	 	

Where:

nn =
1 : Flux Amps 1 (Id)
2 : Torque Amps 1 (Iq)
3 : Flux Amps 2 (Id)
4 : Torque Amps 2 (Iq)
mm = Amps * 10

MCB - Read Magsensor Markers Pattern

Alias: - 		 HexCode: A8 		 CANOpen id: -

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports whether there is marker pattern detected. If no pattern is detected, the
output will be 0. If only one sensor is connected to any pulse input, no argument is need-
ed for this query. If more than one sensor is connected to pulse inputs and these inputs
are enabled and configured in Magsensor MultiPWM mode, then the argument following
the query is used to select the sensor.

Syntax Serial: ?MCB [cc]

Argument: SensorNumber

 Min: None Max: Total Number of Pulse Inputs

Syntax Scripting: result = getvalue(_MCB, cc)

Reply:

MCB = nn Type: Unsigned 8-bit Min: 0 Max: 255

Where:

cc = (When only one sensor enabled)

None or 1 : Current sensor

cc = (When several sensors enabled)

	 1 : Sensor at pulse input 1

	 2 : Sensor at pulse input 2

	 ...

	 p : Sensor at pulse input p

	 nn =see Table below

Commands Reference

286	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TABLE 15-17. Marker Pattern Number

Marker
Pattern
Number

Markers
Black: Tape
Red: Marker

Left
Right
Transitions

0

L

R

L: 0
R: 0

1

L

R

L: 1
R: 0

2

L

R

L: 111
R: 010

3

L

R

L: 01110
R: 11011

4

L

R

L: 11111
R: 01010

5

L

R

L: 0111110
R: 1101011

6

L

R

L: 1111111
R: 0101010

7

L

R

L: 011101110
R: 110111011

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 287

Marker
Pattern
Number

Markers
Black: Tape
Red: Marker

Left
Right
Transitions

8

L

R

L: 011
R: 110

9

L

R

L: 0
R: 1

10

L

R

L: 010
R: 111

11

L

R

L: 11011
R: 01110

12

L

R

L: 01010
R: 11111

13

L

R

L: 1101011
R: 0111110

14

L

R

L: 0101010
R: 1111111

15

L

R

L: 110111011
R: 011101110

Commands Reference

288	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

MCU - Microprocessor Usage

Alias: - 		 HexCode: A7 		 CANOpen id: -

Description:

Reports an indicative value of the Microprocessor usage of the product. The value is in
percentage out of 100. This value will help user evaluate the effect of the use of scripting
and communication traffic.

Syntax Serial: ?MCU

Syntax Scripting: result = getvalue(_MCU, 1)

Reply:

MCU = nn Type: Unsigned 8-bit Min: 0 Max: 100

Where:

nn =Percentage of the microprocessor usage.

MGD - Read Magsensor Track Detect

Alias: MGDET	 HexCode: 29	 CANOpen id: 0x211D

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports whether a magnetic tape is within the detection range of the sensor. If
no tape is detected, the output will be 0. If only one sensor is connected to any pulse in-
put, no argument is needed for this query. If more than one sensor is connected to pulse
inputs and these inputs are enabled and configured in Magsensor MultiPWM mode, then
the argument following the query is used to select the sensor.

Syntax Serial:	 ?MGD [cc]

Argument:	 SensorNumber
		 Min: None	 Max: Total Number of Pulse Inputs

Syntax Scripting:	 result = getvalue(_MGD, cc)
		 result = getvalue(_MGDET, cc)

Reply:

MGD=nn	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

cc = (When only one sensor enabled)
None or 1 : Current sensor
cc = (When several sensors enabled)
1 : Sensor at pulse input 1
2 : Sensor at pulse input 2
...
p : Sensor at pulse input p
nn =

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 289

0 : No track detected
1 : Track detected

MGM - Read Magsensor Markers

Alias: MGMRKR		 HexCode: 2B	 CANOpen id: 0x211F

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports whether left or right markers are present under sensor.If only one sen-
sor is connected to any pulse input this query will report the data of that sensor, regard-
less which pulse input it is connected to. If more than one sensor is connected to pulse
inputs and these inputs are enabled and configured in Magsensor MultiPWM mode, then
the argument following the query is used to select the sensor.

Syntax Serial:	 ?MGM [cc]

Argument:	 SensorNumber
		 Min: 1	 Max: 2 * Total Number of Pulse Inputs

Syntax Scripting:	 result = getvalue(_MGM, cc)
		 result = getvalue(_MGMRKR, cc)

Reply:

MGM=mm	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

cc = (When only one sensor enabled)
1 : Left Marker
2 : Right Marker
cc = (When several sensors enabled)
1 : Left Marker of sensor at pulse input 1
2 : Right Marker of sensor at pulse input 1
3 : Left Marker of sensor at pulse input 2
4 : Right Marker of sensor at pulse input 2
...
((p-1)* 2)+1 : Left Marker of sensor at pulse input p
((p-1)* 2)+2 : Right Marker of sensor at pulse input p
nn =
0 : No marker detected
1 : Marker detected

MGS - Read Magsensor Status

Alias: MGSTATUS		 HexCode: 2C	 CANOpen id: 0x2120

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports the state of the sensor. If only one sensor is connected to any pulse in-
put, no argument is needed for this query. If more than one sensor is connected to pulse
inputs and these inputs are enabled and configured in Magsensor MultiPWM mode, then
the argument following the query is used to select the sensor.

Commands Reference

290	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial:	 ?MGS

Argument:	 SensorNumber
		 Min: None	 Max: Total Number of Pulse Inputs
Syntax Scripting:	 result = getvalue(_MGS,)
		 result = getvalue(_MGSTATUS,)

Reply:

MGS=f1 + f2*2 + f3*4 + ... + fn*2n-1	 Type: Unsigned 16-bit	 	

Where:

cc = (When only one sensor enabled)
None or 1 : Current sensor
cc = (When only several sensors enabled)
1 : Sensor at pulse input 1
2 : Sensor at pulse input 2

...

p : Sensor at pulse input p
f1 : Tape cross
f2 : Tape detect
f3 : Left marker present
f4 : Right marker present
f9 : Sensor active

MGT - Read Magsensor Track Position

Alias: MGTRACK		 HexCode: 2A	 CANOpen id: 0x211E

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports the position of the tracks detected under the sensor. If only one sensor
is connected to any pulse input, the argument following the query selects which track to
read. If more than one sensor is connected to pulse inputs and these inputs are enabled
and configured in Magsensor MultiPWM mode, then the argument following the query is
used to select the sensor. The reported position of the magnetic track in millimeters, us-
ing the center of the sensor as the 0 reference.

Syntax Serial:	 ?MGT cc

Argument:	 Channel
		 Min: 1	 Max: 3 * Total Number of Pulse Inputs

Syntax Scripting:	 result = getvalue(_MGT, cc)
		 result = getvalue(_MGTRACK, cc)

Reply:

MGM = nn	 Type: Signed 16-bit	 	

Where:

cc = (When only one sensor enabled)
1 : Left Track
2 : Right Track
3 : Active Track

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 291

cc = (When several sensors enabled)
1 : Left Track of sensor at pulse input 1
2 : Right Track of sensor at pulse input 1
3 : Active Track of sensor at pulse input 1
4 : Left Track of sensor at pulse input 2
5 : Right Track of sensor at pulse input 2
6 : Active Track of sensor at pulse input 2

...

((p-1)* 3)+1 : Left Track of sensor at pulse input p
((p-1)* 3)+2 : Right Track of sensor at pulse input p
((p-1)* 3)+3 : Active Track of sensor at pulse input p
nn = position in millimeters

P - Read Motor Power Output Applied

Alias: MOTPWR		 HexCode: 02	 CANOpen id: 0x2102

Description:

Reports the actual PWM level that is being applied to the motor at the power output
stage. This value takes into account all the internal corrections and any limiting resulting
from temperature or over current. A value of 1000 equals 100% PWM. The equivalent mo-
tor phase to phase voltage amplitude is the battery voltage * PWM level.

Syntax Serial:	 ?P [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_P, cc)
		 result = getvalue(_MOTPWR, cc)

Reply:

P=nn	 Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = 0 to +/-1000 power level

Example:

Q: ?P 1
R: P=800

PG – Read PID Proportional Gains

Alias: -		 HexCode: A1		 CANOpen id: 0x215C

Description:

Reads the PID’s Proportional Gains. The value is read as the gain multiplied by 10^6. This
value is used for both speed and position proportional gains.

Syntax Serial: ?PG [cc]

Commands Reference

292	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting: getvalue(_PG, cc)

Number of Arguments: 1

Argument 1: Channel	 Type: Unsigned 8-bit

		 Min: 1	 Max: 2 x Total Number of Motors

Reply:

PG = aa Type: Unsigned 32-bit Min: 0 Max: 2,000,000,000

Where:

cc (single channel) =

			 1: Speed Proportional Gain

			 2: Position Proportional Gain

cc (dual channel) =

			 1: Speed Proportional Gain for motor 1

			 2: Speed Proportional Gain for motor 2

			 3: Position Proportional Gain for motor 1

			 4: Position Proportional Gain for motor 2

aa: Proportional Gain*1.000.000

PHA - Read Phase Amps

Alias: -	 HexCode: 49	 CANOpen id: -

Description:

Measures and reports instant motor phase Amps, in Amps*10, for all current sensors locat-
ed in the motor phases. Applicable only for brushless and AC Induction motor controllers.

Syntax Serial: ?PHA [cc]

Argument:	 Channel

		 Min: 1	 Max: Total Number Of Current Sensors

Syntax Scripting: result = getvalue(_PHA, cc)

Reply:

PHA = aa Type: Signed 16-bit Min: -32767 Max: 32767

Where:

cc = Current Sensor

aa = Amps*10

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 293

PI - Read Pulse Inputs

Alias: PLSIN	 HexCode: 11	 CANOpen id: 0x2148

Description:

Reports the value of each of the enabled pulse input captures. The value is the raw num-
ber in microseconds when configured in Pulse Width mode. In Frequency mode, the
returned value is in Hertz. In Duty Cycle mode, the reported value ranges between 0 and
4095 when the pulse duty cycle is 0% and 100% respectively. In Pulse Count mode,
the reported value in the number of pulses as detected. This counter only increments. In
order to reset that counter the pulse capture mode needs to be set back to disabled and
then again to Pulse Count.

Syntax Serial:	 ?PI [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Total Number of Pulse Input

Syntax Scripting:	 result = getvalue(_PI, cc)
		 result = getvalue(_PLSIN, cc)

Reply:

PI=nn	 Type: Unsigned 16-bit	 Min: 0 	 Max: 65536

Where:

cc = Pulse capture input number

nn = Value

Note:

The total number of Pulse input channels varies from one controller model to another and
can be found in the product datasheet.

PIC - Read Pulse Input after Conversion

Alias: PLSINC	 HexCode: 24	 CANOpen id: 0x2149

Description:

Returns value of a Pulse input after all the adjustments were performed to convert it to a
command or feedback value (Min/Max/Center/Deadband/Linearity). If an input is disabled,
the query returns 0.

Syntax Serial:	 ?PIC [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Total Number of Pulse Input

Commands Reference

294	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting:	 result = getvalue(_PIC, cc)
		 result = getvalue(_PLSINC, cc)

Reply:

PIC=nn	 Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Pulse input number
nn = Converted input value to +/-1000 range

S - Read Encoder Motor Speed in RPM

Alias: ABSPEED	 HexCode: 03	 CANOpen id: 0x2103

Description:

Reports the actual speed measured by the encoders as the actual RPM value. To report
RPM accurately, the correct Pulses per Revolution (PPR) must be stored in the encoder
configuration.

Syntax Serial:	 ?S [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Encoders

Syntax Scripting:	 result = getvalue(_S, cc)
		 result = getvalue(_ABSPEED, cc)

Reply:

S = nn	 Type: Signed 32-bit	 Min: -65535	 Max: 65535

Where:

cc =Motor channel
nn = Speed in RPM

SCC - Read Script Checksum

Alias: SCC	 HexCode: 45	 CANOpen id: 0x2133

Description:

Scans the script storage memory and computes a checksum number that is unique to
each script. If not script is loaded the query outputs the value 0xFFFFFFFF. Since a stored
script cannot be read out, this query is useful for determining if the correct version of a
given script is loaded.

Syntax Serial:	 ?SCC

Argument:	 None		

Syntax Scripting:	 result = getvalue(_SCC, 1)

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 295

Reply:

SCC = nn	 Type: Unsigned 32-bit	 	

Where:

nn = Checksum number

SDT - Read Raw Redirect Received Frame as string

Alias: SDT HexCode: 90 CANOpen id: -

Description:

This query is used in Raw Redirect mode to read the content of a received Raw Redirect
frame in string format. Data will be available for reading, with this query, only after a ?CD
query is first used to check how many received frames are pending in the FIFO buffer.

Syntax Serial: ?SDT

Argument: None

Reply:

SDT=ss Type: String

Where:

ss = ASCII string

Example:

Q: ?SDT

R: SDT=Roboteq

SEC - Read Sensor Errors

Alias: SEC	 HexCode: 8D	 CANOpen id:

Description:

This query is used to read the quality of the sensor used for commutation.

•	 In case of Hall Trapezoidal or Hall Sinusoidal it will return the number of the out of
sequence hall states.

•	 In case of Hall+Encoder Sinusoidal it will return the differrence between the
electrical angle estimated out of the hall sensors and the electrical angle estimated
out of the encoder sensor. The value is in degrees.

•	 In case of SinCos Sinusoidal or Resolver Sinusoidal it will return the result of
(sin^2(x)+cos^2(x)) * 100. The returned value is indicative of the quality of the sin/
cos signal. The closer the value is to 100 the better is the quality of the signal.

•	 In case of any other sensor used in sinusoidal mode it is not applicable.

Commands Reference

296	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial:	 ?SEC[cc]

Argument: Channel

Min:1 Max:Total Number of Motors

Syntax Scripting: result=getvalue(_SEC, cc)

Reply:

SEC=nn	Type: unsigned 8-bit	 Min: 0	 Max:

Where:

cc = Motor channel

nn = Number of sensor errors in case of of Hall trapezoidal or Hall Sinusoidal

 Angle difference in degrees in case of Hall+Encoder Sinusoidal

 Signal Quality in case of SinCos Sinusoidal or Resolver Sinusoidal.

SNA - Read Sensor Angle

Alias: -	 HexCode: 79	 CANOpen id: -

Description:

On brushless controller operating in sinusoidal mode, this query returns the real time val-
ue of the rotor’s angle sensor of brushless motor. This query is useful for verifying trouble-
shooting sin/cos and SPI/SSI sensors. Angle are reported in 0-511 degrees.

Syntax Serial: ?SNA [cc]

Argument:	 Channel

		 Min: 1	 Max: Total Number Of Motors

Syntax Scripting: result = getvalue(_SNA, cc)

Reply:

SNA = aa Type: Unsigned 16-bit Min: 0 Max: 511

Where:

cc = Motor Channel

aa = Sensor Angle

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 297

SNS – Sense Voltage

Alias: -	 HexCode: 71	 CANOpen id: 0x2172

Description:

It reads the instantaneous voltage of a specified phase of the motor and reports the value
in millivolts.

Syntax Serial: ?SNS [cc]

Syntax Scripting: result = GetValue(_SNS, cc)

Argument: Motor Phase Number

 Min: 1(U Phase of Channel 1)	 Max: 6 (W Phase of Channel 2)

Reply:

RMP=nn	 Type: Signed 32-bit 	 Min: -65535 	 Max: 65535

Where:

cc = Motor Phase Number
nn = Phase voltage value in mV.

SR - Read Encoder Speed Relative

Alias: RELSPEED		 HexCode: 07	 CANOpen id: 0x2107

Description:

Returns the measured motor speed as a ratio of the Max RPM (MXRPM) configuration
parameter. The result is a value of between 0 and +/1000. As an example, if the Max RPM
is set at 3000 inside the encoder configuration parameter and the motor spins at 1500
RPM, then the returned value to this query will be 500, which is 50% of the 3000 max.
Note that if the motor spins faster than the Max RPM, the returned value will exceed
1000. However, a larger value is ignored by the controller for its internal operation.

Syntax Serial:	 ?SR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Encoders

Syntax Scripting:	 result = getvalue(_SR, cc)
		 result = getvalue(_RELSPEED, cc)

Reply:

SR = nn	Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = Speed relative to max

Commands Reference

298	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

SS - Read SSI Sensor Motor Speed in RPM

Alias: -	 HexCode: 6A	 CANOpen id: 0x213C

Description:

Reports the actual speed measured by the SSI sensors as the actual RPM value. To report
RPM accurately, the correct Counter number of bits (SLEN) must be stored in the encoder
configuration.

Syntax Serial: ?SS [cc]

Argument:	 Channel

		 Min: 1	 Max: Total Number of SSI sensors

Syntax Scripting: result = getvalue(_SS, cc)

Reply:

SS = aa Type: Signed 32-bit Min: -65535 Max: 65535

Where:

cc = Motor channel

aa = Speed in RPM.

SSR - Read SSI Sensor Speed Relative

Alias: -	 HexCode: 6B	 CANOpen id: 0x213D

Description:

Returns the measured motor speed as a ratio of the Max RPM (MXRPM) configuration pa-
rameter. The result is a value of between 0 and +/1000. As an example, if the Max RPM is
set at 3000 inside the encoder configuration parameter and the motor spins at 1500 RPM,
then the returned value to this query will be 500, which is 50% of the 3000 max. Note
that if the motor spins faster than the Max RPM, the returned value will exceed 1000.
However, a larger value is ignored by the controller for its internal operation.

Syntax Serial: ?SSR [cc]

Argument: 	 Channel

		 Min: 1	 Max: Total Number of SSI sensors

Syntax Scripting: result = getvalue(_SSR, cc)

Reply:

SSR = aa Type: Signed 16-bit Min: -1000 Max: 1000

Where:

cc = Motor channel

aa = Speed relative to max.

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 299

STT - STO Self-Test Result

Alias: -	 HexCode: 70	 CANOpen id: -

Description:

Returns the result of the latest executed STO Self-Test process. This process is applicable
only on motor controllers with STO circuit implemented on their board. If the result is
not successful the Respective STO Fault bit in the Fault Flags is set. The fault is triggered
when:

•	 Any of the transistors or other component of the STO circuit is damaged.
•	 Any of the Power MOSFETs is damaged.
•	 The respective jumper is placed on the board.

Syntax Serial: ?STT xx

Argument: Fault Indication

 Min: 1 (STO Result) Max: 2 (MOSFET Result)

Syntax Scripting: result = getvalue(_STT, xx)

Reply:

If xx = 1 (STO Result)

STT=ff Type Singed 32-bit	 Min: -1 Max: 4

Where ff=

-1: The test is in process

0: Test successful

1: STO1 failed the test

2: STO2 failed the test

3: Test failed using input values

5: Any of the Power MOSFETs is damaged.

If xx = 2 (MOSFET Result)

STT = f1 + f2*2 + f3*4 + ... + fn*2^n-1 Type: Signed 32-bit Min: 0 Max: 4095

Where:

f1 = Top MOSFET of U1 phase is damaged

f2 = Bottom MOSFET of U1 phase is damaged

f3 = Top MOSFET of V1 phase is damaged

f4 = Bottom MOSFET of V1 phase is damaged

f5 = Top MOSFET of W1 phase is damaged

f6 = Bottom MOSFET of W1 phase is damaged

f7 = Top MOSFET of U2 phase is damaged

Commands Reference

300	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

f8 = Bottom MOSFET of U2 phase is damaged

f9 = Top MOSFET of V2 phase is damaged

f10 = Bottom MOSFET of V2 phase is damaged

f11 = Top MOSFET of W2 phase is damaged

f12 = Bottom MOSFET of W2 phase is damaged

T - Read Temperature

Alias: TEMP	 HexCode: 12	 CANOpen id: 0x210F

Description:

Reports the temperature at each of the Heatsink sides and on the internal MCU silicon
chip. The reported value is in degrees C with a one degree resolution.

Syntax Serial:	 ?T [cc]

Argument:	 SensorNbr
		 Min: 1	 Max: 2*(Total Number of Motors) + 1

Syntax Scripting:	 result = getvalue(_T, cc)
		 result = getvalue(_TEMP, cc)

Reply:

T= cc	 Type: Signed 16-bit	 Min: -40 	Max: 1000

Where:

cc =

For Single Channel Controllers:

1 : MCU temperature

2 : Heatsink Temperature

3: Motor Temperature

For dual or triple channel controllers*

1 : MCU temperature

2 : Channel 1 Heatsink Temperature

3 : Channel 2 Heatsink Temperature

4: Channel 1 Motor Temperature

5: Channel 2 Motor Temperature

6: Channel 3 Motor Temperature (if applicable)

tt = temperature in degrees

*Applicable for single channel versions of dual channel controllers.

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 301

Note:

On some controller models, additional temperature values may reported. These are mea-
sured at different points and not documented. You may safely ignore this extra data. Other
controller models only have one heatsink temperature sensor and therefore only report
one value in addition to the Internal IC temperature.

TM - Read Time

Alias: TIME	 HexCode: 1C	 CANOpen id: 0x2119

Description:

Reports the value of the time counter in controller models equipped with Real-Time
clocks with internal or external battery backup. On older controller models, time is count-
ed in a 32-bit counter that keeps track the total number of seconds, and that can be
converted into a full day and time value using external calculation. On newer models, the
time is kept in multiple registers for seconds, minutes, hours (24h format), dayofmonth,
month, year in full.

Syntax Serial:	 ?TM [ee]

Argument:	 Element
		 Min: None	 Max: 6

Syntax Scripting:	 result = getvalue(_TM, ee)
		 result = getvalue(_TIME, ee)

Reply:

TM = nn	Type: Unsigned 32-bit	 Min: 0 	

Where:

ee = date element in new controller model
1 : Seconds
2 : Minutes
3 : Hours (24h format)
4 : Dayofmonth
5 : Month
6 : Year in full
nn = Value

TR - Read Position Relative Tracking

Alias: TRACK	 HexCode: 20	 CANOpen id: 0x2125

Description:

Reads the real-time value of the expected motor position in the position tracking closed
loop mode and in speed position.

Syntax Serial:	 ?TR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Commands Reference

302	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting:	 result = getvalue(_TR, cc)
		 result = getvalue(_TRACK, cc)

Reply:

TR=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Motor channel
nn = Position

TRN - Read Control Unit type and Controller Model

Alias: TRN	 HexCode: 1F	 CANOpen id:

Description:

Reports two strings identifying the Control Unit type and the Controller Model type. This
query is useful for adapting the user software application to the controller model that is
attached to the computer.

Syntax Serial:	 ?TRN

Argument:	 None		

Syntax Scripting:	 result = getvalue(_TRN, 1)

Reply:

TRN=ss	Type: String	 	

Where:

ss = Control Unit Id String:Controller Model Id String

Example:

Q: ?TRN
R:TRN=RCB500:HDC2460

UID - Read MCU Id

Alias: UID	 HexCode: 32	 CANOpen id:

Description:

Reports MCU specific information. This query is useful for determining the type of MCU:
100 = STM32F10X, 300 = STM32F30X. The query also produces a unique Id number that
is stored on the MCU silicon.

Syntax Serial:	 ?UID [ee]

Argument:	 Element
		 Min: 1	 Max: 5

Syntax Scripting:	 result = getvalue(_UID, ee)

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 303

Reply:

UID = nn	 Type: Unsigned 32-bit	 Min: 1 	 Max: 4294M

Where:

ee = Data element
1 : MCU type
2 : MCU Device Id
3-5 : MCU Unique ID
nn = value

V - Read Volts

Alias: VOLTS	 HexCode: 0D	 CANOpen id: 0x210D

Description:

Reports the voltages measured inside the controller at three locations: the main battery
voltage, the internal voltage at the motor driver stage, and the voltage that is available on
the 5V output on the DSUB 15 or 25 front connector. For safe operation, the driver stage
voltage must be above 12V. The 5V output will typically show the controller’s internal
regulated 5V minus the drop of a diode that is used for protection and will be in the 4.7V
range. The battery voltage is monitored for detecting the undervoltage or overvoltage con-
ditions.

Syntax Serial:	 ?V [ee]

Argument:	 SensorNumber
		 Min: 1	 Max: 3

Syntax Scripting:	 result = getvalue(_V, ee)
		 result = getvalue(_VOLTS, ee)

Reply:

V = nn	 Type: Unsigned 16-bit

Where:

ee =
1 : Internal volts
2 : Battery volts
3 : 5V output
nn = Volts * 10 for internal and battery volts. Milivolts for 5V output

Example:

Q: ?V
R:V=135:246:4730
Q: ?V 3
R:V=4730

Commands Reference

304	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

VAR - Read User Integer Variable

Alias: VAR	 HexCode: 06	 CANOpen id: 0x2106

Description:

Read the value of dedicated 32-bit internal variables that can be read and written to/from
within a user MicroBasic script. It is used to pass 32-bit signed number between user
scripts and a microcomputer connected to the controller. The total number of user integer
variables varies from one controller model to another and can be found in the product
datasheet.

Syntax Serial: ?VAR [ee]

Argument:	 VarNumber
		 Min: 1	 Max: Total Number of User Variables

Syntax Scripting:	 result = getvalue(_VAR, ee)

Reply:

VAR=nn		 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

ee = Variable number
nn = Value

SL - Read Slip Frequency

Alias: SL 	 HexCode: 48 	 CANOpen id: 0x2136

Description:

This query is only used in AC Induction boards. Read the value of the Slip Frequency be-
tween the rotor and the stator of an AC Induction motor.

Syntax Serial: ?SL [cc]

Argument: 	 VarNumber

		 Min: 1 Max: Total Number of Motors

Syntax Scripting: result = getvalue(_SL, cc)

Reply:

SL=nn 	 Type: Signed 16-bit 	 Min: -32768	 Max: 32768

Where:

cc = Motor channel

nn = Slip Frequency in Hertz * 10

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 305

DS402 Runtime Queries
Runtime queries created to support DS402 specification are described below:

TABLE 15-18.

Command Arguments Description

AOM Channel Modes of Operation Display (DS402)

CW Channel Control Word (DS402)

SPE Channel Velocity Actual Value (DS402)

FEW Element Value Following Error Window (DS402)

FET Element Value Following Error Time Out (DS402)

HMD Channel Value Homing Method (DS402)

HSP Element Value Homing Speed (DS402)

INT Element Value Interpolation Time Period (DS402)

MSL Element Value Max Motor Speed (DS402)

PAC Channel Profile Acceleration (DS402)

PDC Channel Profile Deceleration (DS402)

PLT Element Value Software Position Limit (DS402)

POF Channel Position Offset (DS402)

POS Channel Target Position (DS402)

PSP Channel Profile Velocity (DS402)

PST Channel Position Actual Value (DS402)

RMP Channel Velocity Demand (DS402)

ROM Channel Modes of Operation (DS402)

S16 Channel Target Velocity (DS402)

SAC Element Velocity Acceleration (DS402)

SDC Element Velocity Deceleration (DS402)

SDM None Supported Drive Modes (DS402)

SPC Channel Value Target Profile Velocity (DS402)

SPL Element Velocity Min/Max Amount (DS402)

SW Channel Status Word (DS402)

TC Channel Target Torque (DS402)

TOF Channel Torque Offset (DS402)

TRQ Channel Torque Actual Value (DS402)

TSL Channel Torque Slope (DS402)

VDV Channel Value Velocity Demand Value (DS402)

VSA Channel Value Velocity Sensor Actual Value (DS402)

VDV Channel Velocity Demand (DS402)

VNM None Version Number (DS402)

VOF Channel Velocity Offset (DS402)

Commands Reference

306	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

AOM – Modes of Operation Display (DS402)

Alias: AOM	 HexCode: 63	 CANOpen id: 0x6061

Description:

Read the actual operation mode.

Syntax Serial: ?AOM [cc]

Reply: AOM=nn

Syntax Scripting: nn = GetValue(_AOM, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value			 Type: Signed 8-bit

Where:

cc = Motor channel

nn = Actual operation mode (see the table below).

TABLE 15-19. Operation Modes

Value Definition Roboteq Operation Mode

-4¹ Velocity Mode Closed Loop Speed Position

-31 Profile Velocity Mode Closed Loop Speed Position

-21 Profile Position Mode Closed Loop Position Tracking Mode²

-11 Profile Position Mode Closed Loop Position Relative Mode2

0 No Mode Open Loop Mode

1 Profile Position Mode Closed Loop Count Position Mode

2 Velocity Mode Closed Loop Speed Mode

3 Profile Velocity Mode Closed Loop Speed Mode

4 Torque Profile Mode Closed Loop torque Mode

8 Cyclic Synchronous Position Mode Closed Loop Count Position Mode

9 Cyclic Synchronous Velocity Mode Closed Loop Speed Mode

10 Cyclic Synchronous Torque Mode Closed Loop Torque Mode

¹Roboteq Specific Modes
2Not all Profile Position features can be supported with this mode.

CW – Control Word (DS402)

Alias: CW	 HexCode: 56	 CANOpen id: 0x6040

Description:

Read the value of the control word.

Syntax Serial: ?CW [cc]

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 307

Reply: CW=nn

Syntax Scripting: nn = GetValue(_CW, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of motors

Result: Value			 Type: Unsigned 16-bit

Where:

cc = Motor channel

nn = Control word value

SPE – Velocity Actual Value (DS402)

Alias: SPE	 HexCode: 96	 CANOpen id: 0x6044, and 0x606C

Description:

Reads the velocity actual value in RPM.

Syntax Serial: ?SPE [cc]

Reply: SPE=nn

Syntax Scripting: nn = GetValue(_SPE, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value			 Type: Signed 32-bit

Where:

cc = Motor channel
nn = Velocity actual value

FEW - Following Error Window (DS402)

Alias: FEW	 HexCode:99	 CanOpen id: 0x6065

Description:

Read the configured following error window for the position mode in counts. If the value
is FFFF FFFFh, the following control is disabled.

Syntax Serial: ?FEW [cc]

Reply: FEW=nn

Syntax Scripting: nn=SetCommand(_FEW, cc)

Commands Reference

308	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument: Channel	 Type: Unsigned 8-bit

	 Min: 1 	 Max: Total number of motors

Result: Value		 Type Unsigned 32-bit

Where:

cc= Motor Channel

nn = Following error window in counts

FET - Following Error Time Out (DS402)

Alias: FET	 HexCode:9A	 CanOpen id: 0x6066

Description:

Read the configured following error time out for the position mode in milliseconds.

Syntax Serial: ?FET[cc]

Reply: FET=nn

Syntax Scripting: nn = SetCommand(_FET, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value			 Type: Unsigned 16-bit

Where:

cc = Motor channel

nn= Following error time out

HMD – Homing Method (DS402)

Alias: - HexCode: AD CANOpen id: 0X6098

Description:

Read the Homing Method that is used.

Syntax Serial: ?HMD [ee]

Reply: HMD = nn

Syntax Scripting: nn=getvalue(_HMD, ee)

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 309

Argument : Channel Unsigned 8-bit

		 Min: 1 Max: Total Number of Motors

Result: Homing Method number Type: Unsigned 8-bit

		 Min: 0 Max: 255

HSP – Homing Speed (DS402)

Alias: - HexCode: AE CANOpen id: 0X6099

Description:

Read the speed that will be used during the homing procedure. Each channel has 2 speed
settings. The first is the speed during search for Home switch and the second is the
speed during search for Index pulse (currently not supported).

Syntax Serial: ?HSP [ee]

Reply: HSP = nn

Syntax Scripting: nn=getvalue(_HSP, ee)

Argument : Channel		 Unsigned 8-bit

		 Min: 1 Max: Total Number of Motors

Result: Homing Speed (RPM) Type: Unsigned 32-bit

		 Min: 0 Max: 20000

Where:

ee=

1: Homing speed during search for Home switch for ch1

2: Homing speed during search for Index pulse (currently not supported) for ch1

3: Homing speed during search for Home switch for ch2

4: Homing speed during search for Index pulse (currently not supported) for ch2

INT - Interpolation Time Period (DS402)

Alias: INT	 HexCode: 9C	 CanOpen id: 0x60C2

Description:

Read the parameters for the Interpolation cycle time. The interpolation time base is the
element 1 and the interpolation time index is element 2. The interpolation time value
comes out of the following formula:

<Interpolation Time(seconds)> = <Interpolation Time Base> x 10^<Interpolation Time
Index>

Commands Reference

310	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial: ?INT [ee]

Reply: INT=nn

Syntax Scripting: nn=GetValue(_INT,ee)

Argument: Element	 Type:Unsigned 8-bit

	 Min: 1	 Max: 2xTotal number of motors

Result: Value		 Type: element 1: Unsigned 8-bit

			 element 2: Signed 8-bit

Where

ee=

1: Interpolation time base for channel 1

2: Interpolation time index for channel 1

3: Interpolation time base for channel 2

4: Interpolation time index for channel 2

...

2x(m-1)+1: Interpolation time base for channel m

2x(m-1)+2: Interpolation time index for channel m

MSL - Max Motor Speed (DS402)

Alias: MSL	 HexCode: 9B	 CanOpen id: 0x6080

Description:

Read the configured maximum motor speed in profile position, profile velocity, profile
torque, cyclic synchronous velocity, cyclic synchronous torque and cyclic synchronous po-
sition modes.

Syntax Serial: ?MSL[cc]

Reply: MSL=nn

Syntax Scripting: nn = GetValue(_MSL, cc)

Argument: Channel	 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value		 Type: Unsigned 32-bit

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 311

PAC – Profile Acceleration (DS402)

Alias: PAC	 HexCode: 5E	 CANOpen id: 0x6083

Description:

Read the configured acceleration in 10×RPM/second.

Syntax Serial: ?PAC [cc]

Reply: PAC=nn

Syntax Scripting: nn = GetValue(_PAC, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value			 Type: Unsigned 32-bit

Where:

cc = Motor channel
nn = Profile acceleration in 10×RPM/second

PDC – Profile Deceleration (DS402)

Alias: PDC	 HexCode: 5F	 CANOpen id: 0x6084

Description:

Read the configured deceleration in 10×RPM/second.

Syntax Serial: ?PDC [cc]

Reply: PDC=nn

Syntax Scripting: nn = GetValue(_PDC, cc)

Argument: Channel	 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value			 Type: Unsigned 32-bit

Where:

cc = Motor channel

nn = Profile deceleration in 10×RPM/second

PLT - Software Position Limit (DS402)

Alias: PLT	 HexCode: 9D	 CanOpen id: 0x607D

Description:

Read the position limits.

Commands Reference

312	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial: ?PLT [ee]

Reply: PLT=nn

Syntax Scripting: nn = GetValue(_PLT, cc)

Argument: element	 Type: Unsigned 8-bit

	 Min: 1	 Max: 2xTotal number of motors

Result: Value		 Type: element 1: Unsigned 8-bit

			 element 2: Signed 8-bit

Where

ee=

1: Software position min limit for channel 1

2: Software position max limit for channel 1

3: Software position min limit for channel 2

4: Software position max limit for channel 2

...

2x(m-1)+1: Software position min limit for channel m

2x(m-1)+2: Software position max limit for channel m

POF - Position Offset (DS402)

Alias: POF HexCode: B0 CANOpen id: 0x60B0

Description:

Read the position offset.

Syntax Serial: ?POF [cc]

Reply: POF = nn

Syntax Scripting: result = getvalue(_POF, cc)

Argument: Channel Type: Unsigned 8-bit

 Min: 1 Max: Total Number of motors

Result: Counts Type: Signed 32-bit.

PST - Position Actual Value

Alias: PST	 HexCode: 95	 CanOpen id: 0x6064

Description:

Read the actual value of the position sensor.

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 313

Syntax Serial: ?PST[cc]

Reply: PST=nn

Syntax Scripting: nn = GetValue(_PST, cc)

Argument: Channel	 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value		 Type: Singed 32-bit

POS – Target Position (DS402)

Alias: POS	 HexCode: 5C	 CANOpen id: 0x607A

Description:

Read the configured target position.

Syntax Serial: ?POS [cc]

Reply: POS=nn

Syntax Scripting: nn = GetValue(_POS, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value			 Type: Signed 32-bit

Where:

cc = Motor channel

nn = Target position

PSP – Profile Velocity (DS402)

Alias: PSP	 HexCode: 5D	 CANOpen id: 0x6081

Description:

Read the configured velocity in RPM.

Syntax Serial: ?PSP [cc]

Reply: PSP=nn

Syntax Scripting: nn = GetValue(_PSP, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Commands Reference

314	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Result: Value			 Type: Unsigned 16-bit

Where:

cc = Motor channel

nn = Profile velocity

RMP – VL Velocity Demand (DS402)

Alias: RMP	 HexCode: 62	 CANOpen id: 0x6043

Description:

Read the instantaneous velocity in RPM generated by the ramp function. Positive values
shall indicate forward direction and negative values shall indicate reverse direction.

Syntax Serial: ?RMP [cc]

Reply: RMP=nn

Syntax Scripting: nn = GetValue(_RMP, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value			 Type: Signed 32-bit

Where:

cc = Motor channel

nn = Velocity in RPM

ROM – Modes of Operation (DS402)

Alias: ROM	 HexCode: 5A	 CANOpen id: 0x6060

Description:

Read the configured modes of operation.

Syntax Serial: ?ROM [cc]

Reply: ROM=nn

Syntax Scripting: nn = GetValue(_ROM, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of motors

Result: Value		 Type: Signed 8-bit

Where:

cc = Motor channel

nn = Modes of operation

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 315

S16 – Target Velocity (DS402)

Alias: MOTVEL	 HexCode: 03	 CANOpen id: 0x6042

Description:

Read the target velocity in RPM for velocity mode. Positive values shall indicate forward
direction and negative values shall indicate reverse direction.

Syntax Serial: ?S [cc]

Reply: S=nn

Syntax Scripting: nn = GetValue(_S, cc)

nn = GetValue(_MOTVEL, cc)

Argument:	 Channel:		 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Result: Value		 Type: Signed 16-bit

	 Min: -500000	 Max: 500000

Where:

cc = Motor channel
nn = Target velocity in RPM

SAC – Velocity Acceleration (DS402)

Alias: SAC	 HexCode: 58	 CANOpen id: 0x6048

Description:

Read the configured velocity acceleration.

Syntax Serial: ?SAC [ee]

Reply: SAC=nn

Syntax Scripting: nn = GetValue(_SAC, ee)

Argument: Element		 Type: Unsigned 8-bit

	 Min: 1		 Max: 2 × Total number of motors

Result: Value			 Type: Unsigned 32-bit

Where:

ee =

1: Delta speed in 10×RPM for channel 1

2: Delta time in seconds for channel 1

Commands Reference

316	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

3: Delta speed in 10×RPM for channel 2

4: Delta time in seconds for channel 2

…

2 × (m - 1) + 1: Delta speed in 10×RPM for channel m.

2 × (m - 1) + 1: Delta time in seconds for channel m.

nn = Delta speed/time

SDC – Velocity Deceleration (DS402)

Alias: SDC	 HexCode: 59	 CANOpen id: 0x6049

Description:

Read the configured velocity deceleration.

Syntax Serial: ?SDC [ee]

Reply: SDC=nn

Syntax Scripting: nn = GetValue(_SDC, ee)

Argument: Element		 Type: Unsigned 8-bit

	 Min: 1		 Max: 2 × Total number of motors

Result: Value			 Type: Unsigned 32-bit

Where:

ee =

1: Delta speed in 10×RPM for channel 1

2: Delta time in seconds for channel 1

3: Delta speed in 10×RPM for channel 2

4: Delta time in seconds for channel 2

…

2 × (m - 1) + 1: Delta speed in 10×RPM for channel m.

2 × (m - 1) + 1: Delta time in seconds for channel m.

nn = Delta speed/time

SDM – Supported Drive Modes (DS402)

Alias: SDM	 HexCode: 64	 CANOpen id: 0x6502

Description:

Read the supported drive modes. Roboteq controllers support the following modes:

•	 Profile Position Mode (PP).
•	 Velocity Mode (VL).
•	 Profile Velocity Mode (PV).
•	 Torque Mode (TQ).

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 317

Syntax Serial: ?SDM

Reply: SDM=nn

Syntax Scripting: nn = GetValue(_TSL)

Result: Value	 Type: Unsigned 32-bit

Where:

nn = Supported drive modes

SPL – Velocity Min/Max Amount (DS402)

Alias: SPL	 HexCode: 57	 CANOpen id: 0x6046

Description:

Read the configured minimum and maximum amount of velocity in RPM.

Syntax Serial: ?SPL [ee]

Reply: SPL=nn

Syntax Scripting: nn = GetValue(_SPL, ee)

Argument: Element		 Type: Unsigned 8-bit

	 Min: 1		 Max: 2 × Total number of motors

Result: Value			 Type: Unsigned 32-bit

Where:

ee =

1: Min amount for channel 1

2: Max amount for channel 1

3: Min amount for channel 2

4: Max amount for channel 2

…

2 × (m - 1) + 1: Min amount for channel m.

2 × (m - 1) + 2: Max amount for channel m.

nn = Velocity max/min amount

SW – Status Word (DS402)

Alias: SW	 HexCode: 61	 CANOpen id: 0x6041

Description:

Read the status of the PDS FSA.

Commands Reference

318	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TABLE 15-20. Status Word Mapping

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NU OMS ILA TR RM MS W SOD QS VE F OE SO RTSO

MSB	 LSB

NU  Not Used, OMS  Operation mode specific, ILA  Internal limit active
TR  Target reached, RM  Remote, W  Warning, SOD  Switch on disabled,
QS  Quick stop, VE  Voltage enabled, F  Fault, OE  Operation Enabled,
SO  Switch on RTSO  Ready to switch on.

If bit 4 (voltage enabled) of the status word is always 1. If bit 5 (quick stop) of the status
word is 0, this shall indicate that the PDS is reacting on a quick stop request (quick stop
mode is always 2). Bit 7 (warning) is always 0. Bit 9 (remote) of the status word is always
1 when the control is done only via the DS402 commands and queries. In case of any
command triggerred by any other interface or action by any trigger input (diigtal inputs,
sensor limits, etc.), then this bit goes to 0. If bit 10 (target reached) of the status word is
1, this shall indicate that the PDS has reached the set-point. Bit 10 shall also be set to 1, if
the operation mode has been changed. The change of a target value by software shall al-
ter this bit. If halt occurred and the PDS has halted then bit 10 shall be set to 1, too. If the
same internal value is commanded then bit 10 shall not alter, if bit 10 is supported (see
Table 15-22). If bit 11 (internal limit active) of the status word is 1, this shall indicate that,
current limit has been reached or the motor command is out of limits.

TABLE 15-21. State Coding

Status Word PDS FSA state

xxxx xxxx x0xx 0000b Not ready to switch on

xxxx xxxx x1xx 0000b Switch on disabled

xxxx xxxx x01x 0001b Ready to switch on

xxxx xxxx x01x 0011b Switched on

xxxx xxxx x01x 0111b Operation enabled

xxxx xxxx x00x 0111b Quick stop active

xxxx xxxx x0xx 1111b Fault reaction active

xxxx xxxx x0xx 1000b Fault

TABLE 15-22. Definition of Bit 10

Bit Value Definition

10
0

Halt (bit 8 in control word) = 0: Speed or Position Target not reached
Halt (bit 8 in control word) = 1: Axis decelerates

1
Halt (bit 8 in control word) = 0: Speed or Position Target reached
Halt (bit 8 in control word) = 1: Velocity of axis is 0

Note: In Roboteq controllers, Halt operation mode is 2. Slow down on slow down ramp
and stay in operation enable.

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 319

Profile Position Mode

TABLE 15-23. Status Word Mapping in Profile Position Mode

15 14 13 12 11 10 9 0

see Table
15-20

Not Used
Set-Point

Acknowledge
see Table

15-20
Target Reached see Table 15-20

MSB LSB

In Profile Position Mode the operation specific bits are mapped in Table 15-23. Status
Word Mapping in Profile Position Mode with bits 10 and 12 user can acknowledge the sta-
tus of the controller as shown in Table 10 and Table 12. Bit 13 is always 0.

Profile Torque Mode

The profile torque mode uses some bits of the statusword for mode specific purposes.
Table 15-24 shows the structure of the status word. Target torque reached is defined table
15-25.

TABLE 15-24. Statusword for profile torque mode

15� 14 13� 12 11 10 9� 0

see Table 15-20 reserved see Table 15-20 Target reached see Table 15-20

MSB LSB

TABLE 15-25. Definition of bit 10

Bit Value Definition

10 0 Halt (bit 8 in controlword) = 0: Target torque not reached
Halt (bit 8 in controlword) = 1: Axis decelerates

1 Halt (bit 8 in controlword) = 0: Target torque reached
Halt (bit 8 in controlword) = 1: Velocity of axis is 0

Velocity Mode
The Velocity mode uses some bits of the statusword for mode specific purposes. Table
15-26 shows the structure of the status word.

TABLE 15-26. Statusword for velocity mode

15� 14 13� 12 11 10 9� 0

see Table 15-20 reserved (0) see Table 15-20 reserved (0) see Table 15-20

MSB LSB

Commands Reference

320	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Cyclic Synchronous Position Mode
The cyclic synchronous position mode uses three bits of the statusword for mode-specific
purposes. Table 15-27 shows the structure of the statusword. Table 15-28 defines the val-
ues for bit 10, 12, and 13 of the statusword.

TABLE 15-27. Statusword for profile cyclic synchronous position mode

15� 14 13 12 11 10 9� 0

see Table 15-20 Following error
Drive follows
the command

value
see Table 15-20 reserved see Table 15-20

MSB LSB

TABLE 15-28. Definition of bit 10, bit 12, and bit 13

Bit Value Definition

10 0 Reserved

1 Reserved

12 0 Drive does not follow the command value – Target position ignored

1 Drive follows the command value – Target position used as input to
position control loop

13 0 No following error

1 Following error

Cyclic Synchronous Velocity Mode and Cyclic Synchronous Torque Mode
The Cyclic synchronous velocity and Cyclic synchronous torque mode use some bits of
statusword. Table 15-29 shows the structure of the statusword. Table 15-30) defines the
values for bit 10, 12, and 13 of the statusword.

TABLE 15-29. Statusword for profile cyclic synchronous velocity mode

15� 14 13 12 11 10 9� 0

see Table 15-20 reserved
Drive follows
the command
value

see Table 15-20 reserved see Table 15-20

MSB LSB

TABLE 15-30. Definition of bit 10, bit 12, and bit 13

Bit Value Definition

10 0 Reserved

1 Reserved

12 0 Target velocity or torque ignored

1 Target velocity or torque used as input to velocity or torque control loop.

13 0 Reserved

1 Reserved

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 321

Profile Velocity Mode

TABLE 15-31. Status Word Mapping in Profile Velocity Mode

15 14 13 12 11 10 9 0

see Table 15-20
Not
Used

Speed
see
Table 15-20

Target
Reached

see Table 15-20

MSB LSB

In Profile Velocity Mode the operation specific bits are mapped in Table 15-31. With bits
10 and 12 user can acknowledge the status of the controller as shown in Table 15-32 and
Table 15-33. Bit 13 is always 0.

TABLE 15-32. Definition of bit 12 in Profile Velocity Mode

Bit Value Definition

12
0 Speed is not equal 0

1 Speed is equal 0

TABLE 15-33. Definition of Bit 12 in Profile Position Mode

Bit Value Definition

12
0 Previous set-point already processed, waiting for new set-point

1 Previous set-point still in process, set-point overwriting shall be accepted

Syntax Serial: ?SW [cc]

Reply: SW=nn

Syntax Scripting: nn = GetValue(_SW, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of motors

Result: Value			 Type: Unsigned 16-bit

Where:

cc = Motor channel

nn = Status word value

Commands Reference

322	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TC – Target Torque (DS402)

Alias: TC		 HexCode: 5B	 CANOpen id: 0x6071

Description:

Read the configured target torque in per thousand of rated torque, when the controller
is in torque mode. Beware that in order to have correct results, the configuration
commands nominal current (NOMA) and torque constant (TNM) must be set
appropriately.

Syntax Serial: ?TC [cc]

Reply: TC=nn

Syntax Scripting: nn = GetValue(_TC, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of motors

Result: Value			 Type: Signed 16-bit

Where:

cc = Motor channel
nn = Torque input value in 100×Nm

TOF - Torque Offset (DS402)

Alias: TOF HexCode: B2 CANOpen id: 0x60B2

Description:

Read the torque offset added to the commanded torque. Commanded torque could be
either directly from user (in torque mode), or produced from speed or position control
loops. Beware in order to have correct values make sure to have configured appropriately
configuration command TNM.

Syntax Serial: ?TOF [cc]

Reply: TOF = nn

Syntax Scripting: result = getvalue(_TOF, cc)

Argument: Channel Type: Unsigned 8-bit

 Min: 1 Max: Total Number of motors

Result: miliNm Type: Signed 32-bit.

DS402 Runtime Queries

	 Advanced Digital Motor Controller User Manual� 323

TRQ – Target Torque (DS402)

Alias: TRQ	 HexCode: 7A	 CANOpen id: 0x6077

Description:

Read the actual torque in 100×Nm. Beware in order to have correct values make sure to
have configured appropriately configuration command TNM.

Syntax Serial: ?TRQ [cc]

Reply: TRQ=nn

Syntax Scripting: nn = GetValue(_TRQ, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of motors

Result: Value		 Type: Signed 16-bit

Where:

cc = Motor channel

nn = Actual torque 100×Nm

TSL – Torque Slope (DS402)

Alias: TSL	 HexCode: 60	 CANOpen id: 0x6087

Description:

Read the configured rate of change of torque command. Beware in order to have correct
values make sure to have configured appropriately configuration command TNM.

Syntax Serial: !TSL [cc]

Reply: TSL=nn

Syntax Scripting: nn = GetValue(_TSL, cc)

Argument: Channel		 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of motors

Result: Value		 Type: Unsigned 32-bit

Where:

cc = Motor channel

nn = Torque slope

Commands Reference

324	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

VDV – Velocity Demand (DS402)

Alias: -	 HexCode: 97	 CANOpen id: 0x606B

Description:

It reads the instantaneous velocity demand in RPM. In Speed mode, it coincides with the
RPM command. In Position modes, provided cascaded control is enabled, the command
is the output of the Position loop that is used as input in the Speed loop.

Syntax Serial: ?VDV [cc]

Argument: Channel	 Type: Unsigned 8-bit

	 Min: 1		 Max: Total number of motors

Syntax Scripting: nn = GetValue(_VDV, cc)

Reply: RMP=nn		 Type: Signed 32-bit 	 Min: -65535 	 Max: 65535

Where:

cc = Motor channel
nn = Velocity demand in RPM

VNM – Version Number (DS402)

Alias: VNM	 HexCode: 65	 CANOpen id: 0x67FE

Description:

Read the version number of the CiA 402 profile.

Syntax Serial: !VNM

Reply: VNM=nn

Syntax Scripting: nn = GetValue(_TSL)

Result: Value	 Type: Unsigned 32-bit

Where:

nn = Version number

VOF - Velocity Offset (DS402)

Alias: VOF HexCode: B1 CANOpen id: 0x60B1

Description:

Read the velocity offset added to velocity command. Velocity command could be either
directly set from user, in speed mode operation, or produced from position control loop.

Query History Commands

	 Advanced Digital Motor Controller User Manual� 325

Syntax Serial: ?VOF [cc]

Reply: VOF = nn

Syntax Scripting: result = getvalue(_VOF, cc)

Argument: Channel Type: Unsigned 8-bit

 Min: 1 Max: Total Number of motors

Result: RPM Type: Signed 32-bit.

Query History Commands
Every time a Real Time Query is received and executed, it is stored in a history buffer
from which it can be recalled. The buffer will store up to 16 queries. If more than 16 que-
ries are received, the new one will be added to the history buffer while the firsts are re-
moved in order to fit the 16 query buffer.

Queries can then be called from the history buffer using manual commands, or automati-
cally, at user selected intervals. This feature is very useful for monitoring and telemetry.

Additionally, the history buffer can be loaded with a set of user selected queries at power
on so that the controller can automatically issue operating values immediately after power
up. See “TELS - Telemetry String” configuration command for details on how to set up
the startup Telemetry string. “Another feature is the streams. In this case the data can be
printed after a prefix and separated with a delimiter. In order to enable a stream, the spe-
cial character “/” needs to be typed in front of the first query.

A command set is provided for managing the history buffer. These special commands
start with a “#” character.

TABLE 15-34. Query History Commands

Command Description

Send the next value. Stop automatic sending

C Clear buffer history

nn Start automatic sending

xx nn Start automatic sending for specific stream

/”<prefix>”,”<delimiter>”?Q cc Create data streams

//? Dump the streams’ prefixes and delimiters

- Send Next History Item / Stop Automatic Sending

A # alone will call and execute the next query in the buffer. If the controller was in the
process of automatically sending queries from the buffer, then receiving a # will cause the
sending to stop.

Commands Reference

326	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

When a query is executed from the history buffer, the controller will only display the que-
ry result (e.g. A=10:20). It will not display the query itself.

Syntax:

	 #

Reply: QQ

Where:

	 QQ = is reply to query in the buffer.

C - Clear Buffer History

This command will clear the history buffer of all queries that may be stored in it. If the
controller was in the process of automatically sending queries from the buffer, then re-
ceiving this command will also cause the sending to stop

Syntax:

	 # C

Reply: None

nn - Start Automatic Sending

This command will initiate the automatic retrieving and execution of queries from the
history buffer. The number that follows the command is the time in milliseconds between
repetition. A single query is fetched and executed at each time interval.

Syntax:

	 # nn

Reply: QQ at every nn time intervals

Where:

	 QQ = is reply to query in the buffer.
	 nn = time in ms

Range:	 nn = 1 to 32000ms

xx nn - Start automatic sending for specific stream

Using this syntax one can set the refresh rate of each stream. This is used only in case of
using streams.

Syntax:

	 # xx nn

Reply: The respective stream at every nn ms.

Query History Commands

	 Advanced Digital Motor Controller User Manual� 327

Where:

	 xx = the stream.
	 nn = time in ms.

 /?Q cc - Create data streams

Using this syntax the next queries that are going to be sent will be printed after a prefix
and separated by a delimiter. The default prefix is none and the default delimiter is tab.
There can be created up to 3 streams and can have different refresh rates.

Syntax:

	 /”<prefix>”,”<delimiter>”?Q cc

Reply: The regular reply of the query ?Q cc.

Where:

Q = is reply the query symbol.

cc = motor channel

prefix = the prefix for the stream

delimiter = the delimiter for the stream

For example, if one wants a log of the Motor Power(P), Motor Amps(A) and Encoder Speed(S)
of channel 1, with refresh rate 50ms, prefix “d=” and delimiter ‘:’ they should type:

	 /”d=”,”:”?p 1_?a 1_?s 1_# 50

Two more stream examples are shown below:

	 /”f=”,”:”?t 1_?v 2_?v 3_# 100

	 /?p 1_?f 1_?e 1_# 200

The outcome of these three streams are shown in the image below:

Commands Reference

328	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

FIGURE 15-2. Data streams

In order to clear the streams # c can be sent and then, the legacy history method can be
used. In order to stop the streams but not delete them send #. then using command # xx
nn one can restart the streams with nn refresh rate.

//? - Dump the streams’ prefixes and delimiters

Using this syntax one can see in each of the 3 streams which prefix and delimiter is set.
In that case one can know which stream respects to each stream number.

Maintenance Commands

	 Advanced Digital Motor Controller User Manual� 329

FIGURE 15-3. Data streams prefixes

Maintenance Commands
This section contains a few commands that are used occasionally to perform mainte-
nance functions.

TABLE 15-35. Maintenance Commands

Command Arguments Description

CLMOD None Motor/Sensor Setup

CLSAV Key Save calibrations to Flash

DFU Key Update Firmware via USB/CANOpen

EELD None Load Parameters from EEPROM

EELOG None Dump Flash Log Data

EERST Key Reset Factory Defaults

EESAV None Save Configuration in EEPROM

ERASE None Erase Flash Log Data

LK Key Lock Configuration Access

RESET Key Reset Controller

SLD Key Script Load

STIME Time Set Time

UK Key Unlock Configuration Access

Commands Reference

330	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

CLMOD – Motor/Sensor Setup

Argument: None

Description:

This command is used in order to perform motor and/or sensor setup, and will configure
accordingly the respective fields in order to have a smooth motor spin and alignment
between the motor and the sensor directions. During setup no motor command can be
applied to the motors. For more details see Section 8.

Note: The motor will spin.

Syntax: %CLMOD nn

Where:

0: Exit/Stop Setup Mode.

2: Setup channel 1.

3: Setup channel 2.

CLSAV - Save calibrations to Flash

Argument: Key

Description:

Saves changes to calibration to Flash. Calibration parameters are stored permanently until
new values are stored. This command must be used with care and must be followed by a
9-digit safety key to prevent accidental use.

Syntax:
%CLSAV safetykey

Where:
safetykey = 321654987

DFU - Update Firmware via USB/CANOpen

Argument: Key

Description:

Firmware update can be performed via the RS232 port via USB or via CANOpen. When
done via USB or CANOpen, the DFU command is used to cause the controller to enter
in the firmware upgrade mode. This command must be used with care and must be fol-
lowed by a 9-digit safety key to prevent accidental use. Once the controller has received
the DFU command, it will no longer respond to the PC utility and no longer be visible on
the PC. When this mode is entered, you must either launch Roborun+ DFU Loader, in
case of USB, or Roborun+ Firmware Loader, in case of CANOpen. In case of CANOpen
the default parameters are used which are Node ID 126 and Bit Rate 125Kb/s.

Syntax:
%DFU safetykey

Where:
safetykey = 321654987

Maintenance Commands

	 Advanced Digital Motor Controller User Manual� 331

EELD - Load Parameters from EEPROM

Argument: None

Description:

This command reloads the configuration that are saved in EEPROM back into RAM and
activates these settings.

Syntax:
%EELD

EELOG - Dump Flash Log Data

Argument: None

Description:

This command is used in order to Dump the Flash Log Data. Each data entry is printed in
a row with each value to be separated with a tab. The values, that are going to be printed,
are the following:

•	 timestamp (milisseconds since power-up),
•	 maximum absolute motor current since the time of the previous entry,
•	 maximum battery voltage since the time of the previous entry,
•	 maximum heatsink temperature since the time of the previous entry and
•	 Fault Flags that have caused the entry.

Each entry is saved to flash at every new fault or every 10 minute when a fault is active.

Note: Flash Log Data are not working when any of the motor channels are configured in
resolver sinusoidal mode.

Syntax: %EELOG

EERST - Reset Factory Defaults

Argument: Key

Description:

The EERST command will reload the controller’s RAM and EEPROM with the fac-
tory default configuration. Beware that this command may cause the controller to
no longer work in your application since all your configurations will be erased back
to factory defaults. This command must be used with care and must be followed by a
9-digit safety key to prevent accidental use.

Syntax:
%EERST safetykey

Where:
safetykey = 321654987

Commands Reference

332	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

EESAV - Save Configuration in EEPROM

Argument: None

Description:

Controller configuration that have been changed using any Configuration Command
can then be saved in EEPROM. Once in EEPROM, it will be loaded automatically in the
controller every time the unit is powered on. If the EESAV command is not called after
changing a configuration, the configuration will remain in RAM and active only until the
controller is turned off. When powered on again, the previous configuration that was in the
EEPROM is loaded. This command uses no parameters.

Syntax:
%EESAV

ERASE - Erase Flash Log Data

Argument:None

Description:

This command is used in order to Erase the Flash Log Data.

Syntax: %ERASE

LK - Lock Configuration Access

Argument: Key

Description:

This command is followed by any user-selected secret 32-bit number. After receiving it,
the controller will lock the configuration and store the key inside the controller, in area
which cannot be accessed. Once locked, the controller will no longer respond to configu-
ration reads. However, it is still possible to store or to set new configurations.

Syntax:
%LK secretkey

Where:
secretkey = 32-bit number (1 to 4294967296)

RESET - Reset Controller

Argument: Key

Description:

This command will cause the controller to reset similarly as if it was powered OFF and
ON. This command must be used with care and must be followed by a 9-digit
safety key to prevent accidental reset.

Syntax:
%RESET safetykey

Where:
safetykey = 321654987

Set/Read Configuration Commands

	 Advanced Digital Motor Controller User Manual� 333

SLD - Script Load

Argument: Key

Description:

After receiving this command, the controller will enter the script loading mode. It will
reply with HLD and stand ready to accept script bytecodes in intel Hex Format. The exact
download and data format is described in the MicroBasic section of the manual. The
timeout for the communication is 3 seconds. After the timeout expires, the controller will
return “-”.

Syntax:
%SLD

STIME - Set Time

Argument: Hours Mins Secs

Description:

This command sets the time inside the controller’s clock that is available in some con-
troller models. The clock circuit will then keep track of time as long as the clock remains
under power. On older controller models, the clock is a single 32-bit counter in which the
number of seconds from a preset day and time is stored (for example 02/01/00 at 3:00).
On newer model, the clock contains 6 registers for seconds, dates, minuted, hours, day-
ofmonth, month, year. The command syntax will be different for each of these models.

Syntax:
%STIME nn : Older models%STIME ee nn : Newer models

Where:
Older models:nn = number of secondsNewer modelsee = 1: Seconds2: Minutes3: Mours
(24h format)4: Dayofmonth5: Month6: Year in fullnn = Value

UK - Unlock Configuration Access

Argument: Key

Description:

This command will release the lock and make the configuration readable again. The
command must be followed by the secret key which will be matched by the controller
internally against the key that was entered with the LK command to lock the con-
troller. If the keys match, the configuration is unlocked and can be read.

Syntax:
%UK secretkey

Where:
secretkey = 32-bit number (1 to 4294967296)

Set/Read Configuration Commands
These commands are used to set or read all the operating parameters needed by the con-
troller for its operation. Parameters are loaded from EEPROM into RAM, from where they
are and then used every time the controller is powered up or restarted.

Commands Reference

334	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Important Notices

The total number of configuration parameters is very large. To simplify the config-
uration process and avoid errors, it is highly recommended to use the RoborunPlus
PC utility to read and set configuration.
Some configuration parameters may be absent depending on the presence or ab-
sence of the related feature on a particular controller model.

Setting Configurations

The general format for setting a parameter is the “^” character followed by the command
name followed by parameter(s) for that command. These will set the parameter in the con-
troller’s RAM and this parameter becomes immediately active for use. The parameter can
also be permanently saved in EEPROM by sending the %EESAV maintenance command.

Some parameters have a unique value that applies to the controller in general. For exam-
ple, overvoltage or undervoltage. These configuration commands are therefore followed
by a single parameter:

^UVL 100 : Sets Undervoltage limit to 10.0V
^OVL 400 : Sets Overvoltage limit to 40.0V

Other parameters have multiple value, with typically one value applying to a different chan-
nel. Multiple value parameters are numbered from 1 to n. For example, Amps limit for a
motor channel or the configuration of an analog input channel.

^ALIM 1 250 : Sets Amps limit for channel 1 to 25.0A
^AMIN 4 2000 : Sets low range of analog input 4 to 2000

Using 0 as the first parameter value will cause all elements to be loaded with the same
content.

^ADB 0 10 : Sets the deadband of all analog inputs to 10%

Important Notice

Saving configuration into EEPROM can take up to 20ms per parameter. The con-
troller will suspend the loop processing during this time, potentially affecting the
controller operation. Avoid saving configuration to EEPROM during motor operation.

Reading Configurations

Configuration parameters are read by issuing the “~” character followed by the command
name and with an optional channel number parameter. If no parameter is sent, the con-
troller will give the value of all channels. If a channel number is sent, the controller will
give the value of the selected channel.

The reply to parameter read command is the command name followed by “=” followed
by the parameter value. When the reply contains multiple values, then the different values
are separated by “:”. The list below describes every configuration command of the control-
ler. For Example:
		 ~ALIM : Read Amps limit for all channels

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 335

Reply: ALIM= 750:650
		 ~ALIM 2: Read Amps limit for channel 2

Reply: ALIM= 650

Configuration parameters can be read from within a MicroBasic script using the getcon-
fig() function. The setconfig() function is used to load a new value in a configuration pa-
rameter.

Important Warning

Configuration commands can be issued at any time during controller operation.
Beware that some configuration parameters can alter the motor behavior. Change
configurations with care. Whenever possible, change configurations while the
motors are stopped.

Configuration Read Protection

The controller may be locked to prevent the configuration parameters to be read. Given
the large number of possible configurations, this feature provides effective system-level
copy protection. The controller will reply to configuration read requests only if the read
protection is unlocked. If locked, the controller will respond a “-” character.

General Configuration and Safety
The commands in this group are used to configure the controller’s general and safety
settings.

TABLE 15-36. General and Safety Configurations

Command Arguments Description

ACS Enable Analog Center Command to Start

AMS Enable Analog keep within Guard Bands

BEE Address Value User Storage in Battery Backed RAM

BRUN Enable Script Auto-Start

CLIN Channel Linearity Command Linearity

CPRI Level Command Command Priorities

DFC Channel Value Default Command value

DMOD Mode Modbus Mode

ECHOF OffOn Enable/Disable Serial Echo

EE Address Data User-Defined Values

FLCL None Automatic Fault Clearance

ISM None Raw Redirect Mode

MDAL Option Modbus Data Alignment

MNOD ID Modbus Slave ID

Commands Reference

336	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Command Arguments Description

PMS Enable Pulse keep within Min & Max Safety

RS485 Enable Enable RS485

RSBR BitRate Set RS232/RS485 baudrate

RWD Timeout Serial Data Watchdog

SCRO Port Select Print output port for scripting

STO Enable Safe Torque Off

TELS String Telemetry string

ACS - Analog Center Command to Start

HexCode: 0B 		 CANOpen id: 0x300B

Description:

This parameter enables the analog safety that requires that the input be at zero
or centered before it can be considered as good. This safety is useful when oper-
ating with a joystick and requires that the joystick be centered at power up before mo-
tors can be made to run. On mutli-channel controllers, this configuration acts on all analog
command inputs, meaning that all joysticks must be centered before any one becomes
active.

Syntax Serial: ^ACS nn
		 ~ACS

Syntax Scripting: setconfig(_ACS, nn)

Number of Arguments: 1

Argument 1: Enable

	 Type: Unsigned 8-bit
	 Min: 0	 Max: 1
	 Default: 1

Where:
nn =
0: Safety disabled
1: Safety enabled

AMS - Analog keep within Guard Bands

HexCode: 0C CANOpen id: 0x300C

Description:

This configuration is used to make sure that the analog input command is always within
a user preset minimum and maximum safe value. It is useful to detect, for example, that
the wire connection to a command potentiometer is broken. If the safety is enabled and
the input is outside the safe range, the Analog input command will be considered invalid.
The controller will then apply a motor command based on the priority logic.

Syntax Serial: ^AMS nn
		 ~AMS

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 337

Syntax Scripting: setconfig(_AMS, nn)

Number of Arguments: 1

Argument 1: Enable
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 1
	 Default: 1 = Enabled

Where:
nn =
0: Disabled
1: Enabled

BEE - User Storage in Battery Backed RAM

HexCode: 64 CANOpen id: 0x3064

Description:

Store and retrieve user data in battery backed RAM. Storage is quasi permanent, limited
only by the on-board battery (usually several years) . Unlike storage in Flash using the EE
configuration commands, there are no limits in the amount or frequency of read and write
cycles with BEE. This feature is only available on selected models, see product data-
sheet. Battery must be installed in the controller for storage to be possible.

Syntax Serial: ^BEE aa dd
		 ~BEE aa

Syntax Scripting: setconfig(_BEE, aa, dd)

Number of Arguments: 2

Argument 1: Address
	
	 Min: 1	 Max: Total Number of BEE

Argument 2: Value	
	 Type: Signed 16-bit

	 Min: -32768	 Max: 32767
	 Default: 0

Where:

aa = Address

dd = Data

Example:

^BEE 1 555 : Store value 555 in Battery Backed RAM location 1
~BEE 1: Read data from RAM location 1

Commands Reference

338	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

BRUN - Script Auto-Start

HexCode: 48 CANOpen id: 0x3048

Description:

This parameter is used to enable or disable the automatic MicroBasic script execution
when the controller powers up. When enabled, the controller checks that a valid script
is present in Flash and will start its execution 2 seconds after the controller has become
active. The 2 seconds wait time can be circumvented by putting 2 in the command argu-
ment. However, this must be done only on scripts that are known to be bug-free. A crash-
ing script will cause the controller to continuously reboot with little means to recover.

Syntax Serial: ^BRUN nn
		 ~BRUN

Syntax Scripting: setconfig(_BRUN, nn)

Number of Arguments: 1

Argument 1: Enable
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 2
	 Default: 0 = Disabled

Where:

nn =
0: Disabled
1: Enabled after 2 seconds
2: Enabled immediately

CLIN - Command Linearity

HexCode: 0D CANOpen id: 0x300D

Description:

This parameter is used for applying an exponential or a logarithmic transformation on the
command input, regardless of its source (serial, pulse or analog). There are 3 exponential
and 3 logarithmic choices. Exponential correction make the commands change less at the
beginning and become stronger at the end of the command input range. The logarithmic
correction will have a stronger effect near the start and lesser effect near the end. The
linear selection causes no change to the input. A linearity transform is also available for all
analog and pulse inputs. Both can be enabled although in most cases, it is best to use the
Command Linearity parameter for modifying command profiles.

Syntax Serial: ^CLIN cc nn
		 ~CLIN [cc]

Syntax Scripting: setconfig(_CLIN, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 339

Argument 2: Linearity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 7
	 Default: 0 = Linear

Where:

cc = Motor channel
nn =
0: Linear (no change)
1: Exp weak
2: Exp medium
3: Exp strong
4: Log weak
5: Log medium
6: Log strong

Example:

^CLIN 1 1 : Sets linearity for channel 1 to exponential weak

CPRI - Command Priorities

HexCode: 07 CANOpen id: 0x3007

Description:

This parameter contains up to 3 variables and is used to set which type of command the
controller will respond in priority and in which order. The first item is the third priority, the
second item is the fourth priority, and the third item is the fifth priority. The first priority
belongs to the script mode and the second priority belongs to the CAN mode. Each prior-
ity item is then one of the three command modes: Serial, Analog or RC Pulse. See Com-
mand Priorities in the User Manual. Default priority orders are: 1-Serial, 2-Pulse, 3-None.

Syntax Serial: ^CPRI pp nn
		 ~CPRI [pp]

Syntax Scripting: setconfig(_CPRI, pp, nn)

Number of Arguments: 2

Argument 1: Level
	
	 Min: 1	 Max: 3 or 4
	 Default: See description

Argument 2: Command	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 2 or 3
	 Default: See description

Where:

pp = Priority rank
nn =
0: Serial
1: RC

Commands Reference

340	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

2: Analog
3: None
4: None

Example:

^CPRI 1 2 : Set Analog as first priority
~CPRI 2 : Read what command mode is second priority

Note:

USB, RS232, RS485 and TCP commands share the “Serial” type. When serial commands
come from different Serial source, they are executed in the order received.

DFC - Default Command value

HexCode: 0E CANOpen id: 0x300E

Description:

The default command values are the command applied to the motor when no valid com-
mand is fed to the controller. Value 1001 causes no change in position at power up until a
new position command is received.

Syntax Serial: ^DFC cc nn
		 ~DFC [cc]

Syntax Scripting: setconfig(_DFC, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	
	 Type: Signed 16-bit

	 Min: -1000	 Max: 1001
	 Default: 0

Where:

cc : Motor channel

nn : Command value

Example:

^DFC 1 500 : Sets motor command to 500 when no command source are detected
^DFC 2 1001 : Motor takes present position as destination after power up. Motor doesn’t
move.

DMOD – Modbus Mode

HexCode: A1 CANOpen id: 0x30A1

Description:

Configure this parameter in order to enable Modbus and the desired mode.

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 341

Syntax Serial: ^DMOD nn

		 ~DMOD

Syntax Scripting: setconfig(_DMOD, nn)

Number of Arguments: 1

	 Argument 1: Modbus Mode
		 Type: Unsigned 8-bit

		 Min: 0 Max: 4

		 Default: 0

Where:

nn =

0: Off

1: TCP

2: RTU over TCP

3: RS232 ASCII

4: RS485 ASCII

5: RS232 RTU

6: RS485 RTU

Example:

^DMOD 3: Enable Modbus RS232 ASCII mode.

ECHOF - Enable/Disable Serial Echo

HexCode: 09 CANOpen id: 0x3009

Description:

This command is used to disable/enable the echo on the RS232, RS485, TCP or USB port.
By default, the controller will echo everything that enters the serial communication port.
By setting ECHOF to 1, commands are no longer being echoed. The controller will only
reply to queries and the acknowledgements to commands can be seen.

Syntax Serial: ^ECHOF nn
		 ~ECHOF

Syntax Scripting: setconfig(_ECHOF, nn)

Number of Arguments: 1

Argument 1: OffOn
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 1
	 Default: 0 = Echo on

Commands Reference

342	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

nn =
0: Echo is enabled
1: Echo is disabled

Example:

^ECHOF 1 : Disable echo

EE - User-Defined Values

HexCode: 00 CANOpen id: 0x3000

Description:

Read and write user-defined values that can be permanently stored in Flash. Storage area
size is typically 32 x 16-bit words but can vary from one product to the other. The com-
mand alters data contained in a RAM area. The %EESAV Maintenance Command, or !EES
Real Time Command must be used to copy the RAM array to Flash. The Flash is copied to
RAM every time the device powers up.

Syntax Serial: ^EE aa dd
		 ~EE aa

Syntax Scripting: setconfig(_EE, aa, dd)

Number of Arguments: 2

Argument 1: Address
	
	 Min: 1 Max: Total Number of Storage words
Argument 2: Data	
	 Type: Signed 16-bit

	 Min: -32768	 Max: +32767
	 Default: 0

Where:

aa = Address
dd = Data

Example:

^EE 1 555 : Store value 555 in RAM location 1
%EESAV or !EES : Copy data from temporary RAM to Flash
		 ~EE 1 : Read data from RAM location 1

Note:

See product datasheet to know the total available EE storage.

Do not transfer to Flash with %EESAV or !EES at high frequency as the number of write
cycles to Flash are limited to around 10000.

Avoid transferring to Flash while the product is performing critical operation.

Write to address locations 1 and up. Writing at address 0 will fill all RAM location with the
value.

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 343

FLCL – Automatic Fault Clearance

HexCode: FE CANOpen Id: 0x30FE

Description:

This parameter controls the automatic clearance of the following faults: Overvoltage,
Undervoltage and Overtemperature. If disabled, the triggered faults will not be cleared
if the fault condition is restored unless a respective command comes (see MG runtime
command). So, when e.g. battery volts go above overvoltage limit and overvoltage fault
gets triggered, it will not be cleared automatically when the battery volts go below the
overvoltage minus the overvoltage hysteresis.

Syntax Serial: ^FLCL nn

	 ~FLCL

Syntax Scripting: setconfig(_FLCL, nn)

Number of Arguments: 2

Argument 1: Channel

		 Min: 0 Max: 1 Default: 1

Where:

nn =

0: Disabled

1: Enabled

Example:

^FLCL 0: Faults will be cleared only when the MG runtime command is sent.

ISM - Raw Redirect Mode

HexCode: E9		 CANOpen id: 0x30E9

Description:

Configure this parameter in order to enable Raw Redirect Mode and the interface to be
used.

Syntax Serial: ^ISM nn

 ~ISM

Syntax Scripting: setconfig(_ISM, nn)

Number of Arguments: 1

Commands Reference

344	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: Raw Redirect Mode

 Type: Unsigned 8-bit

 Min: 0 Max: 2

 Default: 0

Where:

nn =

0: Off

2: RS232

4: RS485

Example:

^ISM 1: Enable ModbusRaw Redirect mode on RS232 interface.

MDAL – Modbus Data Alignment

HexCode: CA	 CANOpen id: 0x30CA

Description:

Configure this parameter in order to set the alignment of the Modbus byte frame. This op-
tion depends on what the Modbus master supports.

Syntax Serial: 	 ^MDAL nn

		 ~MDAL

Syntax Scripting: setconfig(_MDAL, nn)

Number of Arguments: 1

	 Argument 1:	 Modbus Data Alignment

			 Type: Unsigned 8-bit

			 Min: 0 Max: 3

			 Default: 0

Where:
nn =
0: High Word/High Byte
1: High Word/Low Byte
2: Low Word/High Byte
3: Low Word/Low Byte

Example:

^MDAL 2: Configure Modbus Data Alignment to Low Word/High Byte.

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 345

MNOD – Modbus Slave ID

HexCode: A2 CANOpen id: 0x30A2

Description:

Configure this parameter in order to set Modbus Slave Node ID of the controller. In that
way this controller wil be distinguished inside a Modbus network.

Syntax Serial: ^MNOD nn

		 ~MNOD

Syntax Scripting: setconfig(_MNOD, nn)

Number of Arguments: 1

	 Argument 1: Modbus Node ID

		 Type: Unsigned 8-bit

		 Min: 0 Max: 127

		 Default: 1

Where:
nn = Node ID

Example:

^MNOD 3: Configure Modbus Node ID to 3.

PMS - Pulse keep within Min & Max Safety

HexCode: F4 CANOpen id: 0x30F4

Description:

This configuration is used to make sure that the pulse input command is always within a
user preset minimum and maximum safe value. It is useful to detect, for example, that
the wire connection is broken. If the safety is enabled and the input is outside the safe
range, the Pulse input command will be considered invalid.

The controller will then apply a motor command based on the priority logic.

Syntax Serial: ^PMS nn

 ~PMS

Syntax Scripting: setconfig(_PMS, nn)

Number of Arguments: 1

Argument 1: Enable

Commands Reference

346	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Type: Unsigned 8-bit

Min: 0 		 Max: 1

Default: 1 = Enabled

Where:

nn =

0: Disabled

1: Enabled

RSBR - Set RS232/RS485 baudrate

HexCode: 0A CANOpen id: 0x300A

Description:

Sets the serial communication bit rate of the RS232 and RS485 ports. Choices are one of
five most common bit rates. On selected products, the port output can be inverted to al-
low a simplified connection to devices that have TTL serial ports instead of full RS232 (not
applicable for RS485 port).

Syntax Serial: ^RSBR nn
		 ~RSBR

Syntax Scripting: setconfig(_RSBR, nn)

Number of Arguments: 1

Argument 1: BitRate
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 4 or 9
	 Default: 0 = 115200

Where:
nn =
0: 115200
1: 57600
2: 38400
3:19200
4: 9600
5: 115200 + Inverted RS232
6: 57600 + Inverted RS232
7: 38400 + Inverted RS232
8: 19200 + Inverted RS232
9: 9600 + Inverted RS232
10: 230600

Example:

^RSBR 3 : sets baud rate at 19200

Note:

This configuration can only be changed while connected via USB or via scripting. After the
baud rate has been changed, it will not be possible to communicate with the Roborun PC

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 347

utility using the serial port until the rate is changed back to 115200. Slow bit rates may
result in data loss if more characters are sent than can be handled. The inverted mode is
only available on selected products.

RS485 - Enable RS485

HexCode: D0 CANOpen id: 0x30D0

Description:

Configure this parameter in order to enable the RS485 communication. This feature is
applicable only on motor controllers, where RS485 pins are shared with other features. In
these controllers the default value is Disabled. In any other controller that support RS485
with dedicated pins the default value is Enabled.

Syntax Serial: 	 ^RS485 nn

		 ~ RS485

Syntax Scripting: setconfig(_RS485, nn)

Number of Arguments: 1

	 Argument 1: Enable RS485

		 Type: Unsigned 8-bit

		 Min: 0 Max: 1

		 Default: 0

Where:
nn = Enable RS485
0: Disabled.
1: Enabled.

Example:

^RS485 1: Enable RS485.

RWD - Serial Data Watchdog

HexCode: 08 CANOpen id: 0x3008

Description:

This is the Serial Commands watchdog timeout parameter. It is used to detect when the
controller is no longer receiving commands and switch to the next priority level. Any Real-
time Command arriving from RS232, RS485, TCP, USB, CAN or Microbasic Scripting, The
watchdog value is a number in ms (1000 = 1s). The watchdog function can be disabled by
setting this value to 0. The watchdog will only detect the loss of real time commands, as
shown in section 6. All other traffic on the serial port will not refresh the watchdog timer.
As soon as a valid command is received, motor operation will resume.

Syntax Serial: ^RWD nn
		 ~RWD

Commands Reference

348	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting: setconfig(_RWD, nn)

Number of Arguments: 1

Argument 1: Timeout
	 Type: Unsigned 16-bit
	 Min: 0	 Max: 65000
	 Default: 1000 = 1s

Where:

nn = Timeout value in ms

Example:

^RWD 2000 : Set watchdog to 2s
^RWD 0 : Disable watchdog

SCRO - Select Print output port for scripting

HexCode: 5E CANOpen id: 0x305E

Description:

Selects which port the print statement sends data to. When 0, the last port which re-
ceived a valid character will be the one the script outputs to.

Syntax Serial: ^SCRO nn
		 ~SCRO

Syntax Scripting: setconfig(_SCRO, nn)

Number of Arguments: 1

Argument 1: Port
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 4
	 Default: 0 = Last used

Where:

nn =
0: Last used
1: Serial
2: USB
3: RS485 if applicable,
4: TCP if applicable

STO – STO Enable

HexCode: CF CANOpen id: 0x30CF

Description:

Configure this parameter in order to enable the STO functionality. For boards which have
the respective circuit the respective jumper needs to be removed (see Chapter Safe
Torque-Off (STO), in Section2).

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 349

Syntax Serial: 	 ^STO nn

		 ~STO

Syntax Scripting: setconfig(_STO, nn)

Number of Arguments: 1

	 Argument 1: STO Status

		 Type: Unsigned 8-bit

		 Min: 0 Max: 1

		 Default: 0

Where:

nn = STO status

0: Disabled.
1: Enabled.

Example:

^STO 1: Enable STO functionality.

TELS - Telemetry String

HexCode: 47 CANOpen id: 0x3047

Description:

This parameter command lets you enter the telemetry string that will be used when the
controller starts up. The string is entered as a series of queries characters between a be-
ginning and an ending quote. Queries must be separated by “:” colon characters. Upon
the power up, the controller will load the query history buffer and it will automatically start
executing commands and queries based on the information in this string. Strings up to 48
characters long can be stored in this parameter.

Syntax Serial: ^TELS “string”
		 ~TELS

Syntax Scripting:

Number of Arguments: 1

Argument 1: Telemetry
	 Type: String
	 Min: “”	 Max: 48 characters string
	 Default: “” = Empty string

Where:

string = string of ASCII characters between quotes

Example:

^TELS “?A:?V:?T:# 200” = Controller will issue Amps, Volts and temperature information
automatically upon power up at 200ms intervals.

Commands Reference

350	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Analog, Digital, Pulse IO Configurations
These parameters configure the operating mode and how the inputs and outputs work.

TABLE 15-37. Input/Output Configurations

Command Arguments Description

ACTR InputNbr Center Analog Input Center (0)

ADB InputNbr Deadband Analog Input Deadband

AINA InputNbr Use Analog Input Use

ALIN InputNbr Linearity Analog Input Linearity

AMAX InputNbr Max Analog Input Max

AMAXA InputNbr Action Analog Input Action at Max

AMIN InputNbr Min Analog Input Min

AMINA InputNbr Action Analog Input Action at Min

AMOD InputNbr Mode Analog Conversion Type

APOL InputNbr Polarity Analog Input Conversion Polarity

AUXV None Digital Output High Side Drive Voltage
Level

DINA InputNbr Action Digital Input Action

DINL ActiveLevels Digital Input Active Level

DOA OutputNbr Action Digital Output Action

DOL ActiveLevels Digital Outputs Active Level

DOT OutputNbr Action Digital Output Type

ENCO None Encoder Output Enable

PCTR InputNbr Center Pulse Input Center

PDB InputNbr Deadband Pulse Input Deadband

PINA InputNbr Use Pulse Input Use

PLIN InputNbr Linearity Pulse Input Linearity

PMAX InputNbr Max Pulse Input Max

PMAXA InputNbr Action Pulse Input Action at Max

PMIN InputNbr Min Pulse Input Min

PMINA InputNbr Action Pulse Input Action at Min

PMOD InputNbr Mode Pulse Input Capture Type

PPOL InputNbr Polarity Pulse Input Capture Polarity

ACTR - Analog Input Center (0)

HexCode: 16 CANOpen id: 0x3016

Description:

This parameter is the measured voltage on input that will be considered as the center or
the 0 value. The min, max and center are useful to set the range of a joystick or of a feed-

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 351

back sensor. Internally to the controller, commands and feedback values are converted to
1000, 0, +1000.

Syntax Serial: ^ACTR cc nn
		 ~ACTR [cc]

Syntax Scripting: setconfig(_ACTR, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Analog Inputs
Argument 2: Center	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 10000
	 Default: 2500 mV

Where:

cc = Analog input channel

nn = 0 to 10000mV

Example:

^ACTR 3 2000 : Set Analog Input 3 Center to 2000mV

Note:

Center value must always be a number greater of equal to Min, and smaller or equal to
Max
Make the center value the same as the min value in order to produce a converted output
range that is positive only (0 to +1000)

ADB - Analog Input Deadband

HexCode: 17 CANOpen id: 0x3017

Description:

This parameter selects the range of movement change near the center that should be
considered as a 0 command. This value is a percentage from 0 to 50% and is useful to
allow some movement of a joystick around its center position without change at the con-
verted output.

Syntax Serial: ^ADB cc nn
		 ~ADB [cc]

Syntax Scripting: setconfig(_ADB, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	 Min: 1	 Max: Total Number of Analog Inputs

Argument 2: Deadband	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 50
	 Default: 5 = 5%

Commands Reference

352	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

cc = Analog input channel
nn = Deadband in %

Example:

^ADB 6 10 : Sets Deadband for channel 6 at 10%

Note:

Deadband is not used when input is used as feedback

AINA - Analog Input Use

HexCode: 19 CANOpen id: 0x3019

Description:

This parameter selects whether an input should be used as a command feedback or left
unused. When selecting command or feedback, it is also possible to select which channel
this command or feedback should act on. Feedback can be position feedback if potenti-
ometer is used or speed feedback if tachometer is used. Motor Temperature reads the
thermistor and calculates the temperature according to the Motor Thermistor parameters
(R25 and B25). Embedded in the parameter is the motor channel to which the command
or feedback should apply.

Syntax Serial: ^AINA cc (nn + mm)
		 ~AINA [cc]

Syntax Scripting: setconfig(_AINA, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	 Min: 1	 Max: Total Number of Analog Inputs

Argument 2: Use	
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 255
	 Default: 0 = No action
Where:

cc = Analog input channel
nn =
0: No action
1: Command
2: Feedback
4: Motor Temperature

mm =
mot1*16 + mot2*32 + mot3*64

Example:

^AINA 1 17: Sets Analog channel 1 as command for motor 1. I.e. 17 = 1 (command) +16
(motor 1)

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 353

ALIN - Analog Input Linearity

HexCode: 18 CANOpen id: 0x3018

Description:

This parameter is used for applying an exponential or a logarithmic transformation on an
analog input. There are 3 exponential and 3 logarithmic choices. Exponential correction
will make the commands change less at the beginning and become stronger at the end of
the joystick movement. The logarithmic correction will have a stronger effect near the start
and lesser effect near the end. The linear selection causes no change to the input.

Syntax Serial: ^ALIN cc nn
		 ~ALIN [cc]

Syntax Scripting: setconfig(_ALIN, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1	 Max: Total Number of Analog Inputs

Argument 2: Linearity	
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 6
	 Default: 0 = Linear
Where:

cc = Analog input channel
nn =
0: Linear (no change)
1: Exp weak
2: Exp medium
3: Exp strong
4: Log weak
5: Log medium
6: Log strong

Example:

^ALIN 1 1 : Sets linearity for channel 1 to exp weak

AMAX - Analog Input Max

HexCode: 15 CANOpen id: 0x3015

Description:

This parameter sets the voltage that will be considered as the maximum command value.
The min, max and center are useful to set the range of a joystick or of a feedback sensor. In-
ternally to the controller, commands and feedback values are converted to -1000, 0, +1000.

Syntax Serial: ^AMAX cc nn
		 ~AMAX [cc]

Commands Reference

354	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting: setconfig(_AMAX, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	 Min: 1	 Max: Total Number of Analog Inputs

Argument 2: Max	
	 Type: Unsigned 16-bit
	 Min: 0	 Max: 10000
	 Default: 4900 mV
Where:

cc = Analog input channel
nn = 0 to 10000mV

Example:

^AMAX 4 4500 : Set Analog Input 4 Max range to 4500mV

Note:

Analog input can capture voltage up to around 5.2V. Setting the Analog maximum above
5200 mV, means the conversion will never be able to reach +1000

AMAXA - Analog Input Action at Max

HexCode: 1B CANOpen id: 0x301B

Description:

This parameter selects what action should be taken if the maximum value that is defined
in AMAX is reached. The list of action is the same as these of digital inputs. For example,
this feature can be used to create soft limit switches, in which case the motor can be
made to stop if the feedback sensor in a position mode has reached a maximum value.

Syntax Serial: ^AMAXA cc (aa + mm)
		 ~AMAXA [cc]

Syntax Scripting: setconfig(_AMAXA, cc, aa)

Number of Arguments: 2
Argument 1: InputNbr
	 Min: 1	 Max: Total Number of Analog Inputs

Argument 2: Action	
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 255
	 Default: 0 = No action
Where:

cc = Analog input channel
aa =
0: No action
1: Quick stop

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 355

2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value
mm = mot1*16 + mot2*32 + mot3*64

Example:

^AMAXA 3 33 : Stops motor 2. I.e. 33 = 1 (Quick stop) + 32 (motor2)

AMIN - Analog Input Min

HexCode: 14 CANOpen id: 0x3014

Description:

This parameter sets the raw value on the input that will be considered as the minimum
command value. The min, max and center are useful to set the range of a joystick or of a
feedback sensor. Internally to the controller, commands and feedback values are convert-
ed to -1000, 0, +1000.

Syntax Serial: ^AMIN cc nn
		 ~AMIN [cc]

Syntax Scripting: setconfig(_AMIN, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1	 Max: Total Number of Analog Inputs

Argument 2: Min	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 10000
	 Default: 100 mV

Where:

cc = Analog input channel
nn = 0 to 10000mV

Example:

^AMIN 5 250 : Set Analog Input 5 Min to 250mV

Note:

Analog input can capture voltage up to around 5.2V. Setting the Analog minimum between
5200 and 10000 mV means the conversion will always return 0

Commands Reference

356	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

AMINA - Analog Input Action at Min

HexCode: 1A CANOpen id: 0x301A

Description:

This parameter selects what action should be taken if the minimum value that is defined
in AMIN is reached. The list of action is the same as these of the DINA configuration com-
mand. For example, this feature can be used to create soft limit switches, in which case
the motor can be made to stop if the feedback sensor in a position mode has reached a
minimum value.

Syntax Serial: ^AMINA cc (aa + mm)
		 ~AMINA [cc]

Syntax Scripting: setconfig(_AMINA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Analog Inputs

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:

cc = Analog input channel
aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value
mm = mot1*16 + mot2*32 + mot3*64

Example:

^AMINA 2 33 : Stops motor 2. I.e. 33 = 1 (Quick stop) + 32 (motor2)

AMOD - Analog Conversion Type

HexCode: 13 CANOpen id: 0x3013

Description:

This parameter is used to enable/disable an analog input pin. When enabled, it can be
made to measure an absolute voltage from 0 to 5V, or a relative voltage that takes the 5V
output on the connector as the 5V reference. The absolute mode is preferred whenever
measuring a voltage generated by an outside device or sensor. The relative mode is the

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 357

mode to use when a sensor or a potentiometer is powered using the controller’s 5V out-
put of the controller. Using the relative mode gives a correct sensor reading even though
the 5V output is imprecise.

Syntax Serial: ^AMOD cc nn
		 ~AMOD [cc]

Syntax Scripting: setconfig(_AMOD, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Analog Inputs

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 2
	 Default: 0 = Disabled

Where:
cc = Analog input channel
nn =
0: Disabled
1: Absolute
2: Relative

Example:

^AMOD 1 1 : Analog input 1 enabled in absolute mode

APOL - Analog Input Conversion Polarity

HexCode: 1C CANOpen id: 0x301C

Description:

Inverts the analog capture polarity value after conversion. When this configuration bit is
cleared, the pulse capture is converted into a -1000 to +1000 command or feedback value.
When set, the converted range is inverted to +1000 to -1000.

Syntax Serial: ^APOL cc nn
		 ~APOL [cc]

Syntax Scripting: setconfig(_APOL, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	 Min: 1 Max: Total Number of Analog Inputs

Argument 2: Polarity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 1
	 Default: 0 = Non inverted

Commands Reference

358	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

cc = Analog input channel

nn =
0: Not inverted
1: Inverted

AUXV - Digital Output High Side Drive Voltage Level

HexCode: 10E CANOpen id: 0x310E

Description:

This parameter is used in order to select the voltage level of the High Side Digital Out-
puts. This feature is only available on selected models, see product datasheet.

Syntax Serial: ^AUXV nn

 ~AUXV

 Syntax Scripting: setconfig(_AUXV, nn)

 Number of Arguments: 1

Argument 1: Voltage Level

		 Type: Unsigned 8-bit

		 Min: 0 Max: 1

Where:

nn =

0: 5 Volts

1: 24 Volts

Example:

^AUXV 1 : Set the voltage level of the high side digital outputs to 24 Volts.

DINA - Digital Input Action

HexCode: 0F CANOpen id: 0x300F

Description:

This parameter sets the action that is triggered when a given input pin is activated. The
action list includes: limit switch for a selectable motor and direction, use as a deadman
switch, emergency stop, Quick stop or invert direction. Embedded in the parameter is the
motor channel(s) to which the action should apply.

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 359

Syntax Serial: ^DINA cc (aa + [mm])
		 ~DINA [cc]

Syntax Scripting: setconfig(_DINA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 0 Max: Total Number of Digital Inputs

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No actions

Where:

cc = Input channel number

aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value
9: Soft STO

mm = mot1*16 + mot2*32 + mot3*64

Example:

^DINA 1 33 : Input 1 as Quick stop for Motor 2. I.e. 33 = 1 (Quick stop) + 32 (Motor2)

DINL - Digital Input Active Level

HexCode: 10 CANOpen id: 0x3010

Description:

This parameter is used to set the active level for each Digital input. An input can be made
to be active high or active low. Active high means that pulling it to a voltage will trigger
an action. Active low means pulling it to ground will trigger an action. This parameter is a
single number for all inputs.

Syntax Serial: ^DINL cc aa
		 ~DINL [cc]

Syntax Scripting: setconfig(_DINL, cc, aa)

Number of Arguments: 1

Argument 1: ActiveLevels
	 Type: Unsigned 32-bit

	 Min: 0 Max: 2 ^ Total Number of Digital Inputs

	 Default: 0 = All Active high

Commands Reference

360	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:
cc = Digital input number

aa=
0: Active High
1: Active Low

Example:

^DINL 2 1 : Sets digital input 2 to active low

DOA - Digital Output Action

HexCode: 11 CANOpen id: 0x3011

Description:

This configuration parameter will set what will trigger a given output pin. The parameter
is a number in a list of possible triggers: when one or several motors are on, when one or
several motors are reversed, when an Overvoltage condition is detected or when an Over-
temperature condition is detected. Embedded in the parameter is the motor channel(s) to
which the action should apply.

Syntax Serial: ^DOA nn (a + cc)
		 ~DOA [nn]

Syntax Scripting: setconfig(_DOA, nn, (a+cc))

Number of Arguments: 2

Argument 1: OutputNbr
	 Type: Unsigned 32-bit
	 Min: 1	 Max: Total Number of Digital Outputs

Argument 2: Action
	 Min: 0	
	 Default: See Note

Where:

cc =

16: channel 1

32: channel 2

64: channel 3

aa =
0: Never
1: Motor on
2: Motor reversed
3: Overvoltage
4: Overtemperature
5: Mirror status LED
6: No MOSFET failure

Example:

^DOA 1 19: Output 1 is active when Overvoltage is observed. on channel 1
^DOA 2 33: Output 2 is active when motor of channel 2 is on.

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 361

Note:

Typical default configuration is Digital outputs 1 (2) are active when motor is on. Digital
output 2 (3) when no MOSFET failure is detected.
To activate an output via serial command or from a Microbasic script, set that output to
Never

DOL - Digital Outputs Active Level

HexCode: 12 CANOpen id: 0x3012

Description:

This parameter configures whether an output should be set to ON or to OFF when it is
activated.

Syntax Serial: ^DOL cc aa
		 ~DOL

Syntax Scripting: setconfig(_DOL, cc, aa)

Number of Arguments: 2

Argument 1: OutputNbr

		 Type: Unsigned 32-bit

		 Min: 1 Max: Total Number of Digital Outputs

Argument 2: ActiveLevels
	 Type: Unsigned 32-bit

	 Min: 0	 Max: 2 ^ Total Number of Digital Outputs

	 Default: 0 = All active high

Where:

cc = Digital input number
aa=
0: On when active
1: Off when active

DOT - Digital Output Type

HexCode: 10D CANOpen id: 0x310D

Description:

This parameter is used in order to select the type of the digital outputs. This feature is
only available on selected models that support high side type, see product datasheet. For
the other models all the digital outputs are open drain.

Syntax Serial: ^DOT cc aa

 ~DOT

Commands Reference

362	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting: setconfig(_DOT, cc, aa)

Number of Arguments: 2

Argument 1: OutputNbr

		 Type: Unsigned 32-bit

		 Min: 1 Max: Total Number of Digital Outputs

Argument 2: Type

		 Type: Unsigned 8-bit

		 Min: 0 Max: 1

Where:

nn =

0: Open Drain

1: High Side Driver

Example:

^DOT 2 1: Set the type of digital output 2 to High Side Driver.

ENCO - Encoder Output Enable

HexCode: 10F CANOpen id: 0x310F

Description:

This parameter is used in enable the encoder output of the motor sensor. This feature is
only available on selected models, see product datasheet.

Syntax Serial: ^ENCO nn

 ~ENCO

Syntax Scripting: setconfig(_ENCO, nn)

Number of Arguments: 1

Argument 1:

		 Type: Unsigned 8-bit

		 Min: 0 Max: 1

Where:

nn =

0: Encoder Output Disabled

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 363

1: Encoder Output Enabled

Example:

^ENCO 1 : Enable the encoder output.

PCTR - Pulse Input Center

HexCode: 20 CANOpen id: 0x3020

Description:

This defines the raw value of the measured pulse that would be considered as the 0 value
inside the controller. The default value is 1500 which is the center position of the pulse in
the RC radio mode.

Syntax Serial: ^PCTR cc nn
		 ~PCTR [cc]

Syntax Scripting: setconfig(_PCTR, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Center	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 65536
	 Default: 1500us

Where:

cc = Pulse input number
nn = 0 to 65536us

PDB - Pulse Input Deadband

HexCode: 21 CANOpen id: 0x3021

Description:

This sets the deadband value for the pulse capture. It is defined as the percent number
from 0 to 50% and defines the amount of movement from joystick or sensor around the
center position before its converted value begins to change.

Syntax Serial: ^PDB cc nn
		 ~PDB [cc]

Syntax Scripting: setconfig(_PDB, cc, nn)

Number of Arguments: 2

Commands Reference

364	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: InputNbr
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Deadband	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 50
	 Default: 5 = 5%

Where:
cc = Pulse input number
nn = Deadband in %

Note:

Deadband is not used when input is used as feedback

PINA - Pulse Input Use

HexCode: 23 CANOpen id: 0x3023

Description:

This parameter selects whether an input should be used as a command feedback, posi-
tion feedback or left unused. Embedded in the parameter is the motor channel that this
command or feedback should act on. Feedback can be position feedback if potentiometer
is used or speed feedback if tachometer is used.

Syntax Serial: ^PINA cc (nn + mm)
		 ~PINA [cc]

Syntax Scripting: setconfig(_PINA, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Use	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: See note

Where:

cc = Pulse input number
nn =
0: No action
1: Command

2: Feedback
mm =
mot1*16 + mot2*32 + mot3*64

Example:

^AINA 1 17: Sets Pulse input 1 as command for motor 1. I.e. 17 = 1 (command) +16 (mo-
tor 1)

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 365

PLIN - Pulse Input Linearity

HexCode: 22 CANOpen id: 0x3022

Description:

This parameter is used for applying an exponential or a logarithmic transformation on a
pulse input. There are 3 exponential and 3 logarithmic choices. Exponential correction will
make the commands change less at the beginning and become stronger at the end of the
joystick movement. The logarithmic correction will have a stronger effect near the start
and lesser effect near the end. The linear selection causes no change to the input.

Syntax Serial: ^PLIN cc nn
		 ~PLIN [cc]

Syntax Scripting: setconfig(_PLIN, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Linearity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 6
	 Default: 0 = Linear

Where:

cc = Pulse input number
nn =
0: Linear (no change)
1: Exp weak
2: Exp medium
3: Exp strong
4: Log weak
5: Log medium
6: Log strong

PMAX - Pulse Input Max

HexCode: 1F CANOpen id: 0x301F

Description:

This parameter defines the raw pulse measurement number that would be considered as
the +1000 internal value to the controller. By default, it is set to 2000 which is the max
pulse width of an RC radio pulse.

Syntax Serial: ^PMAX cc nn
		 ~PMAX [cc]

Syntax Scripting: setconfig(_PMAX, cc, nn)

Number of Arguments: 2

Commands Reference

366	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: InputNbr
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Max	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 65536
	 Default: 2000

Where:

cc = Pulse input number
nn = 0 to 65536us

PMAXA - Pulse Input Action at Max

HexCode: 25 CANOpen id: 0x3025

Description:

This parameter configures the action to take when the max value that is defined in PMAX
is reached. The list of action is the same as in the DINA digital input action list. Embedded
in the parameter is the motor channel(s) to which the action should apply.

Syntax Serial: ^PMAXA cc (aa + mm)
		 ~PMAXA [cc]

Syntax Scripting: setconfig(_PMAXA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:

cc = Pulse input number
aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*64

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 367

PMIN - Pulse Input Min

HexCode: 1E CANOpen id: 0x301E

Description:

This sets the raw value of the pulse capture that would be considered as the -1000 in-
ternal value to the controller. The value is in number of microseconds (1000 = 1ms). The
default value is 1000 microseconds which is the typical minimum value on an RC radio
pulse.

Syntax Serial: ^PMIN cc nn
		 ~PMIN [cc]

Syntax Scripting: setconfig(_PMIN, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Min	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 65536
	 Default: 1000

Where:

cc = Pulse input number
nn = 0 to 65536us

PMINA - Pulse Input Action at Min

HexCode: 24 CANOpen id: 0x3024

Description:

This parameter selects what action should be taken if the minimum value that is defined
in PMIN is reached. The list of action is the same as these of the DINA digital input ac-
tions. Embedded in the parameter is the motor channel(s) to which the action should
apply.

Syntax Serial: ^PMINA cc (aa + mm)
		 ~PMINA [cc]

Syntax Scripting: setconfig(_PMINA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs

Commands Reference

368	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:

cc = Pulse input number
aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*64

PMOD - Pulse Input Capture Type

HexCode: 1D CANOpen id: 0x301D

Description:

This parameter is used to enable/disable the pulse input and select its operating mode,
which can be: pulse with measurement, frequency or duty cycle. Inputs can be measured
with a high precision over a large range of time or frequency. An input will be processed
and converted to a command or a feedback value in the range of -1000 to +1000 for use
by the controller internally.

Syntax Serial: ^PMOD cc nn
		 ~PMOD [cc]

Syntax Scripting: setconfig(_PMOD, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 4
	 Default: See note

Where:
cc = Pulse input number
nn =
0: Disabled
1: Pulse width
2: Frequency
3: Duty cycle
4: Magsensor

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 369

5: BMS
6: Pulse Count
7: Flow Sensor

Example:

^PMOD 4 4 : Sets Pulse input 4 in Multi-PWM for Robteq’s MGS1600 magnetic guide
sensor

Note:

Pulse width is designed for capturing RC radio commands. Pulse width must be beween
500us and 3000us, and repeat rate 50Hz or higher
On some products, enabling a pulse input will cause a an offset voltage to be present
when that same input is read as analog

PPOL - Pulse Input Capture Polarity

HexCode: 26 CANOpen id: 0x3026

Description:

Inverts the pulse capture value after conversion. When this configuration bit is cleared, the
pulse capture is converted into a -1000 to +1000 command or feedback value. When set,
the converted range is inverted to +1000 to -1000. Center value must always be a number
greater of equal to Min, and smaller or equal to Max. Make the center value the same
as the min value in order to produce a converted output range that is positive only (0 to
+1000)

Syntax Serial: ^PPOL cc nn
		 ~PPOL

Syntax Scripting: setconfig(_PPOL, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Polarity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 1
	 Default: 0 = Non inverted

Where:

cc = Pulse input number
nn =
0: Not inverted
1: Inverted

Commands Reference

370	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Motor Configurations
This section covers the various configuration parameter applying to motor operations.

TABLE 15-38. Motor Configurations

Command Arguments Description

ALIM Channel Limit Amps Limit

ATGA Channel Action Amps Trigger Action

ATGD Channel Delay Amps Trigger Delay

ATRIG Channel Level Amps Trigger Level

B25 Channel Coefficient Thermistor Temperature Coefficient β25.

BKD Delay Brake Delay

BPR Channel Value Bypass Trajectory/Ramp

BRV Channel Voltage Brake Release Voltage

BHV Channel Voltage Brake Hold Voltage

BDT Channel Delay Brake Delay Time

BLFB Channel Sensor Closed Loop Feedback Sensor

BLSTD Channel Mode Stall Detection

BR Channel Value Mechanical System Rotating Friction Coefficient

CLERD Channel Mode Close Loop Error Detection

EDEC Channel Deceleration Motor Fault Deceleration Rate

EHL Channel Value Encoder Max Limit

EHLA Channel Action Encoder Action at Max

EHOME Channel Value Encoder Home Count

ELL Channel Value Encoder Min Limit

ELLA Channel Action Encoder Action at Min

EMOD Channel Use Encoder Usage

EPPR Channel Value Encoder Pulse/Rev Value

FET Channel Mode Loop Error Time

FEW Channel Mode Loop Error Limit

ICAP Channel Cap PID Integrator Limit

JR Channel Value Mechanical System Inertia

KDG PID Channel Gain PID Derivative Gain

KIG PID Channel Gain PID Integral Gain

KPG PID Channel Gain PID Proportional Gain

LPFB Channel Value Speed feedback low pass filter bandwidth

MAC Channel Acceleration Motor Acceleration Rate

MCLE Channel Value SSI Multi-turn Counter number of bits

MDEC Channel Deceleration Motor Deceleration Rate

MLX InputNbr Value Molex Input

MMOD Channel Mode Operating Mode

MNRPM Channel RPM Min Speed RPM Value

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 371

Command Arguments Description

MSTA Channel Value SSI Multi-turn Counter start bit position

MVEL Channel Velocity Position Mode Velocity

MXMD Mode Mixed Mode

MXPF Channel MaxPower Motor Max Power Forward

MXPR Channel MaxPower Motor Max Power Reverse

MXRPM Channel RPM Max Speed RPM

MXTRN Channel Turns Position Turns Min to Max

NOMA Channel Current Nomiinal Current

OVH Voltage Overvoltage hysteresis

OVL Voltage Overvoltage Limit

OTL Temperature Over Temperature Limit

R25 Channel Resistance Thermistor Resistance at 25oC

SCLE Channel Value SSI Counter number of bits

SCLK Level SSI Clock Frequency

SED Channel Value Sensor Error Detection

SFTS Channel Mode Safety Switch Connected

SHL Channel Value SSI Sensor Max Limit

SHLA Channel Action SSI Sensor Action at Max

SHOME Channel Value SSI Sensor Home Count

SLEN Channel Value SSI frame number of bits

SLL Channel Value SSI Sensor Min Limit

SLLA Channel Action SSI Sensor Action at Min

SMOD Channel Use SSI Sensor Usage

SSTA Channel Value SSI Counter start bit position

THLD Level Short Circuit Detection Sensitivity

TNM Channel Constant Motor Torque Constant

TPAL Channel Time Time for Amps Limit

UVL Voltage Undervoltage Limit

ALIM - Amps Limit

HexCode: 2A CANOpen id: 0x302A

Description:

This is the maximum Amps that the controller will be allowed to deliver to a motor re-
gardless the load of that motor. The value is entered in Amps multiplied by 10. The value
is the Amps that are measured at the motor and not the Amps measured from a battery.
When the motor draws current that is above that limit, the controller will automatically
reduce the output power until the current drops below that limit. For brushless controllers
this value is considered to be in RMS. This value is also used for the calculation of the I2T
limit.

Syntax Serial: ^ALIM cc nn
		 ~ALIM [cc]

Commands Reference

372	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting: setconfig(_ALIM, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Limit	
	 Type: Unsigned 16-bit

	 Min: 10	 Max: Max Amps in datasheet
	 Default: See note

Where:

cc = Motor channel
nn = Amps *10

Example:

^ALIM1 455: Set Amp limit for Motor 1 to 45.5A

Note:

Default value is typically set to the controller’s max amps as defined in the datasheet

ATGA - Amps Trigger Action

HexCode: 2C CANOpen id: 0x302C

Description:

This parameter sets what action to take when the Amps trigger is activated. The list is the
same as in the DINA digital input actions. Typical use for that feature is as a limit switch
when, for example, a motor reaches an end and enters stall condition, the current will
rise, and that current increase can be detected and the motor be made to stop until the
direction is reversed. Embedded in the parameter is the motor channel(s) to which the
action should apply.

Syntax Serial: ^ATGA cc (aa + mm)
		 ~ATGA [cc]

Syntax Scripting: setconfig(_ATGA, cc, aa + mm)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 10	 Max: 255

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 373

	 Default: 0 = No action

Where:

cc = Motor channel
aa =
0 : No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*64

ATGD - Amps Trigger Delay

HexCode: 2D CANOpen id: 0x302D

Description:

This parameter contains the time in milliseconds during which the Amps Trigger Level
(ATRIG) must be exceeded before the Amps Trigger Action (ATGA) is called. This parame-
ter is used to prevent Amps Trigger Actions to be taken in case of short duration spikes.

Syntax Serial: ^ATGD cc nn
		 ~ATGD [cc]

Syntax Scripting: setconfig(_ATGD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Delay	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 10000
	 Default: 500ms

Where:

cc = Motor channel
nn = Delay in ms

Example:

^ATGD 1 1000: Action will be triggered if motor Amps exceeds the value set with ATGL
for more than 1000ms

Commands Reference

374	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

ATRIG - Amps Trigger Level

HexCode: 2B CANOpen id: 0x302B

Description:

This parameter lets you select Amps threshold value that will trigger an action. This
threshold must be set to be below the ALIM Amps limit. When that threshold is reached,
then list of action can be selected using the ATGA parameter.

Syntax Serial: ^ATRIG cc nn
	 ~ATRIG [cc]

Syntax Scripting: setconfig(_ATRIG, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors
Argument 2: Level	
	 Type: Unsigned 16-bit

	 Min: 10	 Max: Max Amps in datasheet
	 Default: Max Amps rating in datasheet

Where:

cc = Motor channel
nn = Amps *10

Example:

^ATRIG2 550: Set Amps Trigger to 55.0A

B25 - Thermistor Temperature Coefficient ββ25

HexCode: 106 CANOpen id: 0x3106

Description:

Set the temperature coefficient of the thermistor attached to the motor. This value can be
derived from the thermistor datasheet either directly or after making some calculations as
stated in chapter Connecting External Thermistor to Analog Inputs, SECTION 3.

Syntax Serial: ^B25 cc nn

 ~B25 cc

Syntax scripting: setconfig(_B25,cc,nn)

Argument 1: Channel Type: Unsigned 8-bit

 Min: 1 Max: Total Number of Motors

 Argument 2: Coefficient Type: Signed 32-bit

	 Default: 0

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 375

Where:

cc=Motor channel

nn=Coefficient in Kelvin (K)

Example:

^B25 1 3100. Set β25 at 3100.

BKD - Brake Delay

HexCode: 01 CANOpen id: 0x3001

Description:

Set the delay in milliseconds from the time a motor stops and the time an output con-
nected to a brake solenoid will be released. Applies to any Digital Ouput(s) that is config-
ured as motor is on. Delay value applies to all motors in multi-channel products.

Syntax Serial: ^BKD nn
		 ~BKD

Syntax Scripting: setconfig(_BKD, nn)

Number of Arguments: 1

Argument 1: Delay
	 Type: Unsigned 16-bit
	 Min: 0	 Max: 65536
	 Default: 250 = 250ms

Where:

nn = Delay in milliseconds

Example:

^BKD 1 1000 : Causes the digital output to go off, and therefore activate the brake, 1.0s
after motor stops being energized

BPR - Bypass Trajectory/Ramp

HexCode: F3 CANOpen id: 0x30F3

Description:

This parameter is configured in order to be able to bypass the ramp of the command or
the trajectory in case of position mode. It is applicable mainly in torque mode (in case it
requires high transitions) or in DS402 cyclic sync modes. It is noted that the bypass ramp
of the command selection is not supported in the case of close loop speed position oper-
ating mode (command remain to zero until bypass ramp is disabled).

Syntax Serial:	 ^BPR cc nn

		 ~BPR [cc]

Syntax Scripting: setconfig(_BPR, cc, nn)

Number of Arguments: 2

Commands Reference

376	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: Channel

	 Min: 1		 Max: Total Number of Motors

	 Argument 2: Bypass Status

	 Type: Unsigned 8-bit

	 Min: 0		 Max: 1

	 Default: 0

Where:

cc = Channel

nn = Bypass Status

0: Disabled

1: Enabled

BRV - Brake Release Voltage

HexCode: E6 CANOpen id: 0x30E6

Description:

This parameter is used to select the Voltage level with which the brake solenoid connect-
ed will be released. It is applicable only on products that support PWM brake connection.
For more details see product’s datasheet. This voltage level is translated in PWM duty
cycle applied on Battery volts. If the value is higher than the battery volts, then the value
of the battery volts is applied.

Syntax Serial: ^BRV cc nn

 ~BRV

Syntax Scripting: setconfig(_BRV, cc, nn)

Number of Arguments: 2

Argument 1: Channel

 Min: 1 Max: Total Number of Motors

Argument 2: Voltage

 Type: Unsigned 16-bit

	 	 Min:0 Max: 1000

 Default: 120 = 12Volts

Where:

cc = Motor channel

nn = Volts*10

Example:

^BRV 1 200: Sets the Release voltage level of the brake of motor channel 1 to 20Volts.

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 377

BHV - Brake Hold Voltage

HexCode: E7 CANOpen id: 0x30E7

Description:

This parameter is used to select the Voltage level with which the brake solenoid connect-
ed will be hold released. It is applicable only on products that support PWM brake con-
nection. For more details see product’s datasheet. This voltage level is translated in PWM
duty cycle applied on Battery volts. If the value is higher than the battery volts, then the
half value of the battery volts is applied.

Syntax Serial: ^BHV cc nn

 ~BHV

Syntax Scripting: setconfig(_BHV, cc, nn)

Number of Arguments: 2

Argument 1: Channel

 Min: 1 Max: Total Number of Motors

Argument 2: Voltage

 Type: Unsigned 16-bit

	 	 Min:0 Max: 1000

 Default: 80 = 8Volts

Where:

cc = Motor channel

nn = Volts*10

Example:

^BHV 2 50: Sets the Hold Voltage level of the brake of motor channel 2 to 5Volts.

BDT - Brake Delay Time

HexCode: E8 CANOpen id: 0x30E8

Description:

This parameter is used to select the time period for which the Brake Release Voltage is
applied. After this time expires then the Brake Hold Voltage will be applied in order to con-
sume less power. It is applicable only on products that support PWM brake connection.
For more details see product’s datasheet. If the value is set to 0 then only the Brake Hold
Voltage will be applied.

Syntax Serial: ^BDT cc nn

 ~BDT

Syntax Scripting: setconfig(_BDT, cc, nn)

Commands Reference

378	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Number of Arguments: 2

Argument 1: Channel

 Min: 1 Max: Total Number of Motors

Argument 2: Delay

 Type: Unsigned 16-bit

	 	 Min:0 Max: 1000

 Default: 500 = 500ms

Where:

cc = Motor channel

nn = Delay in miliseconds

Example:

^BDT 1 200: Sets the Delay Time of the brake of motor channel 1 to 200ms.

BLFB - Closed loop Feedback Sensor

HexCode: 3B CANOpen id: 0x303B

Description:

This parameter is used to select which feedback sensor will be used to measure speed or
position. On brushless motors system equipped with optical encoders and/or SSI sensors,
this parameter lets you select either of these two sensors or the brushless sensors (i.e.
Hall, Sin/Cos, or Resolver), as the source of speed or position feedback. Encoders provide
higher precision capture and should be preferred whenever possible. SSI sensors provide
absolute feedback and are preferred in position modes (e.g. steering). The choice “Other”
is also used to select pulse or analog feedback in some position modes.

Syntax Serial: ^BLFB cc nn
		 ~BLFB

Syntax Scripting: setconfig(_BLFB, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Sensor	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 1
	 Default: 0 = Other Sensor

Where:

cc = Motor channel
nn =

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 379

0: Other feedback (Encoders, SSI sensors, Analog or RC sensors)
1: Brushless sensor feedback (Hall, Sin/Cos, Resolver)

BLSTD - Stall Detection

HexCode: 3A CANOpen id: 0x303A

Description:

This parameter controls the stall detection for brushless motors, brushed motors in
closed loop speed mode and induction motors. If no motion is sensed (i.e. counter
remains unchanged) for a preset amount of time while the power applied is above a given
threshold, a stall condition is detected and the power to the motor is cut until the next idle
motor command is given (0 in case of speed modes, equal to feedback in case of position
modes). This parameter allows three combinations of time & power sensitivities. The
setting also applies when encoders are used in closed loop speed or closed loop speed
position modes on brushed or brushless motors.

Syntax Serial: ^BLSTD cc nn
		 ~BLSTD [cc]

Syntax Scripting: setconfig(_BLSTD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 3
	 Default: 2 = 500ms at 25% Power

Where:

cc = Motor channel
nn =
0: Disabled
1: 250ms at 10% Power
2: 500ms at 25% Power
3: 1000ms at 50% Power

Example:

^BLSTD 2: Motor will stop if applied power is higher than 10% and no motion is detected
for more than 250ms

BR - Mechanical System Rotating Friction Coefficient

HexCode: 10A CANOpen Id: 0x310A

Description:

This parameter defines the mechanical system rotating friction coefficient, which is uti-
lized at acceleration feedforward control. When this value is zero, it means that no accel-
eration feedforward control is implemented.

Syntax Serial: ^BR cc nn

 ~BR [cc]

Commands Reference

380	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting: setconfig(_BR, cc, nn)

Number of Arguments: 2

Argument 1: Channel

 Type: Unsigned 8-bit

 Min: 1 Max: Total Number motors

Argument 2: Value

 Type: Unsigned 32-bit

 Min: 0 Max: 99,999,000

Where:

cc = Motor channel

nn = Mechanical System rotating friction coefficient (Nm/(rad/sec)) * 10000000)

Example:

^BR 1 22500: Configure the mechanical system inertia at 2.25 mNm/(rad/sec).

CLERD - Close Loop Error Detection

HexCode: 38 CANOpen id: 0x3038

Description:

This parameter is used to detect large tracking errors due to mechanical or sensor failures,
and shut down the motor in case of problem in closed loop speed or position modes. The
detection mechanism looks for the size of the tracking error and the duration the error is
present. This parameter allows four combinations of time & error level. This parameter is
not compatible with Closed Loop Speed Position mode.

Syntax Serial: ^CLERD cc nn
		 ~CLERD

Syntax Scripting: setconfig(_CLERD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motor
Channels

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 4

	 Default: 4

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 381

Where:

cc = Motor channel

nn =

0: Detection disabled

1: 250ms at Error > 100

2: 500ms at Error > 250

3: 1000ms at Error > 500

4: Custom (see FEW and FET for configuration)

Example:

^CLERD 2: Motor will stop if command - feedback is greater than 100 for more than
250ms

Note:

Disabling the loop error can lead to runaway or other dangerous conditions in case of sen-
sor failure

EDEC - Motor Fault Deceleration Rate

HexCode: E9 CANOpen id: 0x30E9

Description:

Set the rate of speed change during deceleration for a motor channel, when a fault takes
place. The faults under which this rate will be used are, Quick Stop, Deadman Switch and
Closed Loop Error. Fault Decceleration value is in 0.1*RPM per second. When using con-
trollers fitted with encoder, the speed and deceleration value are actual RPMs. Brushless
motor controllers use the hall sensor for measuring actual speed and acceleration will also
be in actual RPM/s.

Syntax Serial: ^EDEC cc nn ~EDEC [cc]

Syntax Scripting: setconfig(_EDEC, cc, nn)

Number of Arguments: 2

Argument 1: Channel Type: Unsigned 8-bit Min: 1 Max: Total Number of Motor Channels
Argument 2: Deceleration Type: Signed 32-bit

Min: 0 Max: 300000 Default: 10000 = 1000.0 RPM/s

Where:

cc = Motor channel

nn = Deceleration time in 0.1 RPM per second

Commands Reference

382	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

EHL - Encoder Max Limit

HexCode: 4C CANOpen id: 0x304C

Description:

Defines a maximum count value at which the controller will trigger an action when the
counter goes above that number. This feature is useful for setting up virtual or soft limit
switches .This value, together with the Low Count Limit, are also used in the position
mode to determine the travel range when commanding the controller with a relative
position command. In this case, the High Limit Count is the desired position when a com-
mand of 1000 is received.

Syntax Serial:	 ^EHL cc nn
		 ~EHL [cc]

Syntax Scripting: setconfig(_EHL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: 2147M
	 Default: +20000

Where:

cc = Encoder channel
nn = Counter value

EHLA - Encoder Action at Max

HexCode: 4E CANOpen id: 0x304E

Description:

This parameter lets you select what kind of action should be taken when the high limit
count is reached on the encoder. The list of action is the same as in the DINA digital input
action list Embedded in the parameter is the motor channel(s) to which the action should
apply.

Syntax Serial: ^EHLA cc nn
		 ~EHLA [cc]

Syntax Scripting: setconfig(_EHLA, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 383

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:

cc = Encoder channel
aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*64

EHOME - Encoder Home Count

HexCode: 4F CANOpen id: 0x304F

Description:

Contains a value that will be loaded in the selected encoder counter when a home switch
is detected, or when a Home command is received from the serial/USB, or issued from a
MicroBasic script.

Syntax Serial: ^EHOME cc nn
		 ~EHOME [cc]

Syntax Scripting: setconfig(_EHOME, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: 2147M
	 Default: 0

Where:

cc = Encoder channel
nn = Counter value to be loaded

Commands Reference

384	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

ELL - Encoder Min Limit

HexCode: 4B CANOpen id: 0x304B

Description:

Defines a minimum count value at which the controller will trigger an action when the
counter dips below that number. This feature is useful for setting up virtual or soft limit
switches. This value, together with the High Count Limit, are also used in the position
mode to determine the travel range when commanding the controller with a relative posi-
tion command. In this case, the Low Limit Count is the desired position when a command
of -1000 is received.

Syntax Serial: ^ELL cc nn
		 ~ELL [cc]

Syntax Scripting: setconfig(_ELL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: 2147M
	 Default: -20000

Where:

cc = Encoder channel
nn = Counter value

Example:

^ELL 1 -100000 : Set encoder 1 low limit to minus 100000

ELLA - Encoder Action at Min

HexCode: 4D CANOpen id: 0x304D

Description:

This parameter lets you select what kind of action should be taken when the low limit
count is reached on the encoder. The list of action is the same as in the DINA digital input
action list Embedded in the parameter is the motor channel(s) to which the action should
apply.

Syntax Serial: ^ELLA cc (aa + mm)
		 ~ELLA [cc]

Syntax Scripting: setconfig(_ELLA, cc, aa)

Number of Arguments: 2

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 385

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:

cc = Encoder channel
aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*64

EMOD - Encoder Usage

HexCode: 49 CANOpen id: 0x3049

Description:

This parameter defines what use the encoder is for. The encoder can be used to set com-
mand or to provide feedback (speed or position feedback). The use of encoder as feedback
devices is the most common. Embedded in the parameter is the motor to which the en-
coder is associated.

Syntax Serial: ^EMOD cc (aa + mm)
		 ~EMOD [cc]

Syntax Scripting: setconfig(_EMOD, cc, aa)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Encoders

Argument 2: Use	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = Unused

Where:

cc = Encoder channel
aa =
0: Unused
1: Command

Commands Reference

386	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

2: Feedback
mm =
mot1*16 + mot2*32 + mot3*64

Example:

^EMOD 1 18 = Encoder used as feedback for channel 1

EPPR - Encoder Pulse/Rev Value

HexCode: 4A CANOpen id: 0x304A

Description:

This parameter will set the pulse per revolution of the encoder that is attached to the con-
troller. The PPR is the number of pulses that is issued by the encoder when making a full
turn. For each pulse there will be 4 counts which means that the total number of a count-
er increments inside the controller will be 4x the PPR value. Make sure not to confuse the
Pulse Per Revolution and the Count Per Revolution when setting up this parameter. Enter-
ing a negative number will invert the counter and the measured speed polarity.

Syntax Serial: ^EPPR cc nn
		 ~EPPR [cc]

Syntax Scripting: setconfig(_EPPR, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders

Argument 2: Value	
	 Type: Signed 16-bit

	 Min: -32768	 Max: 32767
	 Default: 100

Where:

cc = Encoder channel
nn = PPR value

Example:

^EPPR 2 200 : Sets PPR for encoder 2 to 200

FET – Loop Error Time

HexCode: FD CANOpen id: 0x30FD

Description:

This parameter is used in Close Loop Error Detection and sets the time in the Custom
setting of CLERD.

Syntax Serial: ^FET cc nn

	 ~FET

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 387

Syntax Scripting: setconfig(_FET, cc, nn)

Number of Arguments: 2

Argument 1: Channel

		 Min: 1 Max: Total Number of Motor Channels

Argument 2: Mode

		 Type: Unsigned 32-bit

		 Min: 0 Max:

		 Default: 500

Where:

cc = Motor channel

nn = value in units

Example:

^FET 2 500: Motor 2 will stop if command - feedback is greater than set units for more
than 500 ms.

FEW – Loop Error Limit

HexCode: FC CANOpen id: 0x30FC

Description:

This parameter is used is Close Loop Error Detection and sets the unit number in the Cus-
tom setting of the CLERD.

Syntax Serial: ^FEW cc nn

 ~FEW

Syntax Scripting: setconfig(_FEW, cc, nn)

Number of Arguments: 2

Argument 1: Channel

		 Min: 1 Max: Total Number of Motor Channels

Argument 2: Mode

		 Type: Unsigned 16-bit

		 Min: 0 Max:

		 Default: 250

Where:

cc = Motor channel

nn = value in units

Commands Reference

388	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example:

^FEW 2 100: Motor 2 will stop if command - feedback is greater than 100.

ICAP - PID Integrator Limit

HexCode: 32 CANOpen id: 0x3032

Description:

This parameter is the integral cap as a percentage. This parameter will limit maximum
level of the Integral factor in the PID. It is particularly useful in position systems with long
travel movement, and where the integral factor would otherwise become very large be-
cause of the extended time the integral would allow to accumulate. This parameter can
be used to dampen the effect of the integral parameter without reducing the gain. This
parameter may adversely affect system performance in closed loop speed mode as the
Integrator must be allowed to reach high values in order for good speed control.

Syntax Serial: ^ICAP cc nn
		 ~ICAP [cc]

Syntax Scripting: setconfig(_ICAP, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Cap	
	 Type: Unsigned 8-bit

	 Min: 1	 Max: 100
	 Default: 100%

Where:

cc = Motor channel
nn = Integral cap in %

JR - Mechanical System Inertia

HexCode: 109 CANOpen Id: 0x3109

Description:

This parameter defines the mechanical system inertia, which is utilized at acceleration
feedforward control. When this value is zero, it means that no acceleration feedforward
control is implemented.

Syntax Serial: ^JR cc nn

 ~JR [cc]

Syntax Scripting: setconfig(_JR, cc, nn)

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 389

Number of Arguments: 2

Argument 1: Channel

 Type: Unsigned 8-bit

 Min: 1 Max: Total Number motors

Argument 2: Value

 Type: Unsigned 32-bit

 Min: 0 Max: 99,999,000

Where:

cc = Motor channel

nn = Mechanical System inertia load (kg*m2 * 10000000)

Example:

^JR 1 18500: Configure the mechanical system inertia at 18.5 kg*cm2.

KDG - PID Derivative Gain

HexCode: F2 CANOpen id: 0x30F2

Description:

Sets the PID’s Derivative Gain. The value is set as the gain multiplied by 10^6. This value is
used for both speed and position Derivative gains.

Syntax Serial: ^KDG cc nn
		 ~KDG [cc]

Syntax Scripting: setconfig(_KDG, cc, nn)

Number of Arguments: 2

Argument 1: Channel
			 Min: 1	 Max: 2 * Total Number of Motors

Argument 2:	 Gain Type: Unsigned 32-bit
			 Min: 0		 Max: 2,000,000,000	 Default: 0

Where:

cc (single channel) =
			 1: Speed Derivative Gain
			 2: Position Derivative Gain

cc (dual channel) =
			 1: Speed Derivative Gain for motor 1
			 2: Speed Derivative Gain for motor 2
			 3: Position Derivative Gain for motor 1
			 4: Position Derivative Gain for motor 2

nn = Derivative Gain *1,000,000

Commands Reference

390	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example:

^KDG 1 1500000: Set motor channel 1 Speed Derivative Gain to 1.5.

KIG - PID Integral Gain

HexCode: F1 CANOpen id: 0x30F1

Description:

Sets the PID’s Integral Gain. The value is set as the gain multiplied by 10^6. This value is
used for both speed and position integral gains.

Syntax Serial: ^KIG cc nn
		 ~KIG

Syntax Scripting: setconfig(_KIG, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: 2 * Total Number of Motors

Argument 2:	 Gain Type: Unsigned 32-bit
		 Min: 0		 Max: 2,000,000,000	 Default: 0

Where:

cc (single channel) =
			 1: Speed Integral Gain
			 2: Position Integral Gain

cc (dual channel) =

			 1: Speed Integral Gain for motor 1
			 2: Speed Integral Gain for motor 2
			 3: Position Integral Gain for motor 1
			 4: Position Integral Gain for motor 2

nn = Integral Gain *1,000,000

Example:

^KIG 1 1500000: Set motor channel 1 Speed Integral Gain to 1.5.

KPG - PID Proportional Gain

HexCode: F0 CANOpen id: 0x30F0

Description:

Sets the PID’s Proportional Gain. The value is set as the gain multiplied by 10^6. This value
is used for both speed and position proportional gains.

Syntax Serial: ^KPG cc nn
		 ~KPG

Syntax Scripting: setconfig(_KPG, cc, nn)

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 391

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: 2 * Total Number of Motors

Argument 2: Gain		 Type: Unsigned 32-bit
			 Min: 0		 Max: 2,000,000,000	 Default: 0

Where:

cc (single channel) =
			 1: Speed Proportional Gain
			 2: Position Proportional Gain

cc (dual channel) =

			 1: Speed Proportional Gain for motor 1
			 2: Speed Proportional Gain for motor 2
			 3: Position Proportional Gain for motor 1
			 4: Position Proportional Gain for motor 2

nn = Proportional Gain *1,000,000

Example:

^KPG 1 1500000: Set motor channel 1 Speed Proportional Gain to 1.5.

LPFB - Speed feedback low pass filter bandwidth

HexCode: 112 CANOpen id: 0x3112

Description:

Defines the low pass filter bandwidth applied at speed feedback measurement. Please
note that the filter applies to all feedback sensors except for Hall sensors.

Syntax Serial: ^LPFB cc nn

	 ~LPFB [cc]

Syntax Scripting: setconfig(_LPFB, cc, nn)

Number of Arguments: 2

Argument 1: Channel Min: 1 Max: Total Number of Motors

Argument 2: Low pass filter bandwidth (Hz)

	 Type: Unsigned 8-bit

	 Min: 0 Max: 150

	 Default: 45

Commands Reference

392	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

where:

cc = Motor channel

nn = Low Pass Filter Bandwidth (Hz)

Example:

^LPFB 1 30 : Set the speed feedback low pass filter bandwidth equal to 30 Hz.

MAC - Motor Acceleration Rate

HexCode: 33 CANOpen id: 0x3033

Description:

Set the rate of speed change during acceleration for a motor channel. This command
is identical to the AC realtime command. Acceleration value is in 0.1*RPM per second.
When using controllers fitted with encoder, the speed and acceleration value are actual
RPMs. Brushless motor controllers use the internal sensor (Hall, Sin/Cos or Resolver)
for measuring actual speed and acceleration will also be in actual RPM/s. When using
the controller without speed sensor, the acceleration value is relative to the Max RPM
configuration parameter, which itself is a user-provide number for the speed normally
expected speed at full power. Assuming that the Max RPM parameter is set to 1000, and
acceleration value of 10000 means that the motor will go from 0 to full speed in exactly 1
second, regardless of the actual motor speed. If value is set to 0 then the command ramp
is by-passed.

Syntax Serial: ^MAC cc nn
		 ~MAC [cc]

Syntax Scripting: setconfig(_MAC, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Acceleration	
	 Type: Signed 32-bit

	 Min: 0	 Max: 300000
	 Default: 10000 = 1000.0 RPM/s

Where:
cc = Motor channel
nn = Acceleration time in 0.1 RPM per seconds

Note: In Closed Loop Torque Mode the value is translated in miliAmps/sec

MCLE - SSI Multi-turn Counter number of bits

HexCode: 103 CANOpen Id: 0x3103

Description:

This parameters sets the number of bits of the multi-turn counter of the SSI sensor.

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 393

Syntax Serial: ^MCLE cc nn

 ~MCLE [cc]

Syntax Scripting: setconfig(_MCLSE, cc, nn)

Number of Arguments: 2

Argument 1: Channel

 Type: Unsigned 8-bit

 Min: 1 Max: Total Number of SSI sensors

Argument 2: Value

 Type: Unsigned 8-bit

 Min: 0 Max: 32

Where:

cc = SSI Sensor channel

nn = Multi-turn Counter number of bits

MDEC - Motor Deceleration Rate

HexCode: 34 CANOpen id: 0x3034

Description:

Set the rate of speed change during deceleration for a motor channel. This command is
identical to the DC realtime command. Decceleration value is in 0.1*RPM per second.
When using controllers fitted with encoder, the speed and deceleration value are actual
RPMs. Brushless motor controllers use the internal sensor (Hall, Sin/Cos or Resolver) for
measuring actual speed and decceleration will also be in actual RPM/s. When using the
controller without speed sensor, the deceleration value is relative to the Max RPM config-
uration parameter, which itself is a user-provide number for the speed normally expected
speed at full power. Assuming that the Max RPM parameter is set to 1000, and deceler-
ation value of 10000 means that the motor will go from full speed to 0 1 second, regard-
less of the actual motor speed. If value is set to 0 then the command ramp is by-passed.

Syntax Serial: ^MDEC cc nn

	 ~MDEC [cc]

Syntax Scripting: setconfig(_MDEC, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total Number of Motor Channels

Commands Reference

394	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 2: Deceleration	

	 Type: Signed 32-bit

	 Min: 0	 Max: 300000

	 Default: 10000 = 1000.0 RPM/s

Where:

cc = Motor channel

nn = Deceleration time in 0.1 RPM per second

Note: In Closed Loop Torque Mode the value is translated in miliAmps/sec.

MLX - Molex Input

HexCode: D5 CANOpen id: 0x30D5

Description:

Configure this parameter in order to change the sensors that will be connected to the
molex connector. In brushless controllers if SSI sensors are used then hall sensor inputs
are re-mapped to the digital input pins, as dictated in the controller model’s datasheet. In
order to have these pins functional as hall inputs pull-up resistors should be added exter-
nally. In brushed controllers if SSI sensors are used then encoder inputs are re-mapped to
the DB16 or DB25 pins as per datasheet.

Syntax Serial: 	 ^MLX cc nn

		 ~ MLX [cc]

Syntax Scripting: setconfig(_MLX, cc, nn)

Number of Arguments: 2

	 Argument 1: Channel

		 Min: 1 Max: Total Number of Motors

	 Argument 2: Molex Input

		 Type: Unsigned 8-bit

		 Min: 0 Max: 2

		 Default: 0

Where:
cc = Motor channel
nn = Hall Input
0: Hall Sensors (not for Brushed Controllers).
1: Encoders (not for Brushless controllers).
2: SSI Encoders

Example:

^MLX 2: Configure Molex to have SSI sensors connected.

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 395

MDIR - Motor Direction

HexCode: 77 CANOpen id: 0x3077

Description:

This parameter lets you set the motor direction to inverted or direct.

Syntax Serial: ^MDIR cc nn

Where:

cc = Motor Channel

nn = 0: Not inverted

1: Inverted

Syntax Scripting: setconfig(_MDIR, cc, nn)

MMOD - Operating Mode

HexCode: 27 CANOpen id: 0x3027

Description:

This parameter lets you select the operating mode for that channel. See manual for de-
scription of each mode.

Syntax Serial: ^MMOD cc nn
		 ~MMOD [cc]

Syntax Scripting: setconfig(_MMOD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 6
	 Default: 0 = Open loop

Where:

cc = Motor channel
nn =
0: Open-loop
1: Closed-loop speed
2: Closed-loop position relative
3: Closed-loop count position
4: Closed-loop position tracking
5: Closed-loop torque
6: Closed-loop speed position

Commands Reference

396	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Example:

^MMOD 2 : Select Closed loop position relative

MNRPM - Min Speed RPM

HexCode: CB CANOpen id: 0x30CB

Description:

This parameter contains the minimum speed that can be commanded for a motor in
closed loop speed or closed loop speed position modes. See Figure 15-1 for a more de-
tailed description.

Syntax Serial: 	 ^MNRPM cc nn

		 ~MNRPM [cc]

Syntax Scripting: setconfig(_MNRPM, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 		 Max: Total Number of Motors

Argument 2: Speed (RPM)

	 Type: Unsigned 16-bit

	 Min: 0 Max: 65535

	 Default: 0

Where:

cc = Channel

nn = Min Speed RPM

MSTA - SSI Multi-turn Counter start bit position

HexCode: 102 CANOpen Id: 0x3102

Description:

This parameter sets the position of the first bit of the multi-turn counter inside the SSI
frame.

Syntax Serial: ^MSTA cc nn

 ~MSTA [cc]

Syntax Scripting: setconfig(_MSTA, cc, nn)

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 397

Number of Arguments: 2

Argument 1: Channel

 Type: Unsigned 8-bit

 Min: 1 Max: Total Number of SSI sensors

Argument 2: Value

 Type: Unsigned 8-bit

 Min: 0 Max: 32

Where:

cc = SSI Sensor channel

nn = Multi-turn Counter’s first bit position

MVEL - Position Mode Velocity

HexCode: 35 CANOpen id: 0x3035

Description:

This parameter is the speed at which the motor moves while in position mode. Values are
in RPMs. To change velocity while the controller is in operation, use the !S runtime com-
mand.

Syntax Serial: ^MVEL cc nn

	 ~MVEL [cc]

Syntax Scripting: setconfig(_MVEL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Velocity	
	 Type: Signed 32-bit

	 Min: 0	 Max: 30000
	 Default: 1000 RPM

Where:

cc = Motor channel
nn = Velocity value in RPM

Commands Reference

398	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

MXMD - Mixed Mode

HexCode: 05 CANOpen id: 0x3005

Description:

Selects the mixed mode operation. It is applicable to dual channel controllers and serves
to operate the two channels in mixed mode for tank-like steering. There are 3 possible
values for this parameter for selecting separate or one of the two possible mixed mode
algorithms. Details of each mixed mode is described in Section 7, chapter “Mixed Mode
Select.

Syntax Serial: ^MXMD nn
		 ~MXMD

Syntax Scripting: setconfig(_MXMD, nn)

Number of Arguments: 1

Argument 1: Mode
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 2
	 Default: 0 = Separate

Where:
nn =
0: Separate
1: Mode 1
2: Mode 2

Example:

^MXMD 0 : Set mode to separate

MXPF - Motor Max Power Forward

HexCode: 28 CANOpen id: 0x3028

Description:

This parameter lets you select the scaling factor for the PWM output, in the forward direc-
tion, as a percentage value. This feature is used to connect motors with voltage rating that
is less than the battery voltage. For example, using a factor of 50% it is possible to con-
nect a 12V motor onto a 24V system, in which case the motor will never see more than
12V at its input even when the maximum power is applied.

Syntax Serial: ^MXPF cc nn
		 ~MXPF [cc]

Syntax Scripting: setconfig(_MXPF, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 399

Argument 2: MaxPower	
	 Type: Unsigned 8-bit

	 Min: 25	 Max: 100
	 Default: 100%

Where:

cc = Motor channel
nn = Max Power

MXPR - Motor Max Power Reverse

HexCode: 29 CANOpen id: 0x3029

Description:

This parameter lets you select the scaling factor for the PWM output, in the reverse direc-
tion, as a percentage value. This feature is used to connect motors with voltage rating that
is less than the battery voltage. For example, using a factor of 50% it is possible to con-
nect a 12V motor onto a 24V system, in which case the motor will never see more than
12V at its input even when the maximum power is applied.

Syntax Serial: ^MXPR cc nn
		 ~MXPR [cc]

Syntax Scripting: setconfig(_MXPR, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: MaxPower	
	 Type: Unsigned 8-bit

	 Min: 25	 Max: 100
	 Default: 100%

Where:

cc = Motor channel
nn = Max Power

MXRPM - Max Speed RPM

HexCode: 36 CANOpen id: 0x3036

Description:

Commands sent via analog, pulse or the !G command only range between -1000 to
+1000. The Max RPM parameter lets you select which actual speed, in RPM, will be con-
sidered the speed to reach when a +1000 command is sent. In open loop, this parameter
is used together with the acceleration and deceleration settings in order to figure the
ramping time from 0 to full power.

Syntax Serial: ^MXRPM cc nn
		 ~MXRPM cc

Syntax Scripting: setconfig(_MXRPM, cc, nn)

Commands Reference

400	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Speed (RPM)	
	 Type: Unsigned 16-bit

	 Min: 10	 Max: 65535
	 Default: 1000 RPM

Where:

cc = Motor channel
nn = Max Speed RPM

MXTRN - Position Turns Min to Max

HexCode: 37 CANOpen id: 0x3037

Description:

The parameter indicates the number of rotor rotations from the sensor’s user-defined min-
imum to maximum value. It is utilized in Closed Loop Relative and Tracking Position modes
for measuring the rotor’s speed. When using an analog or pulse feedback sensor, the user
must manually set the MSTRN value. However, with other sensors such as AB encoders,
SSI, or Hall sensors, the firmware automatically calculates this value.

For more details, refer to the ‘Closed Loop Relative and Tracking Position Modes’ section.

Parameter calculation indicating table:

Sensor Calculation Mode

Pulse or Analog Measure the number of rotor turns from -1000 to
+1000 feedback value and set it to the MXTRN
parameter

User

AB Encoder MXTRN = (EHL-ELL)*100/(EPPR*4) Automatic

Hall MXTRN = (BHL-BLL)*100/(BPOL*6) Automatic

SSI MXTRN = ((SHL-SLL)*100)/(SCPR*SPOL) Automatic

Syntax Serial: ^MXTRN cc nn
		 ~MXTRN [cc]

Syntax Scripting: setconfig(_MXTRN, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors
Argument 2: Turns	
	 Type: Signed 32-bit

	 Min: 10	 Max: 100000
	 Default: 10000 = 1000.0 turns

Where:

cc = Motor channel
nn = Number of turns * 10

Example:

^MXTRN 1 2000: Set max turns for motor 1 to 200.0 turns

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 401

NOMA - Nominal Current

HexCode: FA CANOpen id: 0x30FA

Description:

Set the nominal current of the motor. This is the current that the motor can draw continu-
ously. This value is used for the I2T protection. For more details check chapter “I2T Protec-
tion in SECTION 7.

Syntax Serial: ^NOMA cc nn

 ~NOMA cc

Syntax scripting: setconfig(_NOMA,cc,nn)

Argument 1: Channel Type: Unsigned 8-bit

 Min: 1 Max: Total Number of Motors

Argument 2: Current Type: Unsigned 32-bit

	 Default: see note.

Where:

cc=Motor channel

nn=Current in Amps*10

Example:

^NOMA 1 100. Set nominal current at 10A.

Note:

Default value is typically set the controller’s continuous amps as defined in the datasheet.

OVH - Overvoltage hysteresis

HexCode: 42 CANOpen id: 0x3042

Description:

This voltage gets subtracted to the overvoltage limit to set the voltage at which the over-
voltage condition will be cleared. For instance, if the overvoltage limit is set to 500 (50.0)
and the hysteresis is set to 50 (5.0V), the MOSFETs will turn off when the voltage reach-
es 50V and will remain off until the voltage drops under 45V

Syntax Serial: ^OVH nn
	 ~OVH

Syntax Scripting: setconfig(_OVH, nn)

Number of Arguments: 1

Argument 1: Voltage
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 255 = 25.5V
	 Default: 50 = 5.0V

Commands Reference

402	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

nn = Volts *10

Example:

^OVH 45 : Sets hysteresis at 4.5V

Note:

Make sure that overvoltage limit minus hysteresis is above the supply voltage.

OVL - Overvoltage Limit

HexCode: 02 CANOpen id: 0x3002

Description:

Sets the voltage level at which the controller must turn off its power stage and signal an
Overvoltage condition. Value is in volts multiplied by 10 (e.g. 450 = 45.0V) . The power
stage will turn back on when voltage dips below the Overvoltage Clearing threshold that
is set with the OVH configuration command.

Syntax Serial: ^OVL nn
		 ~OVL

Syntax Scripting: setconfig(_OVL, nn)

Number of Arguments: 1

Argument 1: Voltage
	 Type: Unsigned 16-bit
	 Min: 100 = 10.0V	 Max: See Product Datasheet
	 Default: See Product Datasheet

Where:

nn = Volts *10

Example:

^OVL 400 : Set Overvoltage limit to 40.0V

Note:

On firmware versions 1.5 and earlier, no hysteresis exists and the overvoltage condition is
cleared as soon as the voltage dips below the overvoltage limit.

OTL - Over Temperature Limit

HexCode: D1 CANOpen id: 0x30D1

Description:

Sets the Heatsink and Motor Temperature level at which the controller must turn off its
power stage and signal an OverHeat condition. Value is in Celsius degrees . When tem-
perature reaches 5 degrees below the limit, the controller starts to decrease the maxi-
mum applied power (duty cycle), by 20% for each additional degree. The power stage will
turn back on gradually when heat sink temperature dips below the above limit. See Sec-

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 403

tion 7, chapter “Temperature-Based Protection” for more details.

Syntax Scripting: setconfig(_OTL, cc, nn)

Number of Arguments: 2

	 Argument 1: Temperature Sensor Type: Unsigned 8-bit Min: 1 Max: 3

	 Argument 2: Temperature Type: Unsigned 16-bit	 Min: 0	� Max: 85 for
Heatsink
temperature and
120 for motor
temperatures

Where:

cc =

1: OverTemperature Limit for Heatsink Temperature

2: OverTemperature Limit for Channel 1 Motor Temperature

3: OverTemperature Limit for Channel 2 Motor Temperature

nn = Temperature in Celsius degrees

Example:

^OTL 1 75: Set Over temperature limit for Heatsink Temperature to 75 Celsius degrees.

R25 - Thermistor Resistance at 25oC

HexCode: 105 CANOpen id: 0x3105

Description:

Set the resistance of the thermistor at 25oC. This value can be derived from the therm-
istor datasheet directly. Check chapter Connecting External Thermistor to Analog Inputs,
SECTION 3 for more details.

Syntax Serial: ^R25 cc nn

 ~R25 cc

Syntax scripting: setconfig(_R25,cc,nn)

Argument 1: Channel Type: Unsigned 8-bit

 Min: 1 Max: Total Number of Motors

 Argument 2: Resistance Type: Signed 32-bit

	 Default: 0

Commands Reference

404	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

cc=Motor channel

nn=Resistance in Ohm (Ω)

Example:

^R25 1 1000. Set Resistance of the thermistor at 25oC at 1000Ohm.

SCLE - SSI Counter number of bits

HexCode: 101 CANOpen Id: 0x3101

Description:

Set the number of bits of the angle counter of the SSI sensor.

Syntax Serial: ^SCLE cc nn

 ~SCLE [cc]

Syntax Scripting: setconfig(_SCLE, cc, nn)

Number of Arguments: 2

Argument 1: Channel

 Type: Unsigned 8-bit

 Min: 1 Max: Total Number of SSI sensors

Argument 2: Value

 Type: Unsigned 8-bit

 Min: 0 Max: 32

Where:

cc = SSI Sensor channel

nn = Angle Counter number of bits

SCLK - SSI Clock Speed

HexCode: 107 CANOpen Id: 0x3107

Description:

This parameter will set the frequency of the SSI clock. In case of controllers supporting
more than one SSI sensors, this parameter affects all of them. The necessity of modifying
that parameter exists based on the specifications of the sensor. Sensors with longer data
frame will require quicker clock period, in order to get the full frame within 62,5us, that is
the feedback update period.

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 405

Syntax Serial: ^SCLK nn

 ~SCLK

Syntax Scripting: setconfig(_SCLK, nn)

Number of Arguments: 1

Argument 1: Value

 Type: Unsigned 8-bit

 Min: 0 Max: 4	 Default: 0

Where:

nn =

 0 for 680kHz

 1 for 1360kHz

 2 for 2720kHz

 3 for 5440kHz

 4 for 10800kHz

Example:

^SCLK 1: Sets SSI clock to 1360kHz.

SED - Sensor Error Detection

HexCode: E4 CANOpen id: 0x30E4

Description:

This parameter sets the sensor error detection level. There are three levels of the sensitiv-
ity, Disabled, Tolerant and Strict. If it is configured as disabled then the function is inactive.
when the selected value is Tolerant then the fault will be activated after 5 detected sen-
sor errors (it is reseted when motor command is zero or the direction is reversed). If it is
configured as Strict then the fault will be generated after the first sensor error. For more
details check chapter “Sensor Error Detection” in SECTION 8.

Syntax Serial:	 ^SED cc nn

		 ~SED [cc]

Syntax Scripting: setconfig(_SED, cc, nn)

Number of Arguments: 2

Argument 1: Channel

Commands Reference

406	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Type: Unsigned 8-bit

	 Min: 1 Max: Total Number of Brush-less Motor

Argument 2: Mode

Default: 2 = Strict

Where

cc= Number of brush-less motor

nn=

0: Disable

1: Tolerant

2: Strict

SFTS - Safety Switch Connected

HexCode: 114 CANOpen Id: 0x3114

Description:

This parameter is set when a Safety Brake Switch is connected between the UVW
connectors of the respective controller channel and the motor. Having the Safety Brake
Switch connected there is no need to perform the MOSFET health test since it is per-
formed by it.

Syntax Serial: ^SFTS cc nn

 ~SFTS [cc]

Syntax Scripting: setconfig(_SFTS, cc, nn)

Number of Arguments: 2

Argument 1: Channel

 Type: Unsigned 8-bit

 Min: 1 Max: Total Number of motors

Argument 2: Value

 Type: Unsigned 8-bit

 Min: 0 Max: 1

Where:

cc = motor channel

nn =

		 0: Not connected

		 1: Connected

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 407

SHL - SSI Sensor Max Limit

HexCode: D8 CANOpen id: 0x30D8

Description:

Defines a maximum count value at which the controller will trigger an action when the
SSI counter goes above that number. This feature is useful for setting up virtual or soft
limit switches. This value, together with the SSI Sensor Low Count Limit, are also used in
the position mode to determine the travel range when commanding the controller with a
relative position command. In this case, the SSI Sensor High Limit Count is the desired
position when a command of 1000 is received.

Syntax Serial: 	 ^SHL cc nn

		 ~SHL [cc]

Syntax Scripting: setconfig(_SHL, cc, nn)

Number of Arguments: 2

	 Argument 1:	 Channel

			 Min: 1 	 Max: Total Number of SSI Sensors

	 Argument 2: Value

			 Type: Signed 32-bit

			 Min: -2147M 		 Max: 2147M

			 Default: +20000

Where:

cc = SSI Sensor channel

nn = Counter value

SHLA - SSI Sensor Action at Max

HexCode: DA CANOpen id: 0x30DA

Description:

This parameter lets you select what kind of action should be taken when the high limit
count is reached on the SSI Sensor. The list of action is the same as in the DINA digital
input action list Embedded in the parameter is the motor channel(s) to which the action
should apply.

Syntax Serial: 	 ^SHLA cc nn

		 ~SHLA [cc]

Syntax Scripting: setconfig(_SHLA, cc, nn)

Number of Arguments: 2

Argument 1: Channel

			 Min: 1	 Max: Total Number of SSI Sensors

Commands Reference

408	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 2: Action

			 Type: Unsigned 8-bit
			 Min: 0 	 Max: 255
			 Default: 0 = No action

Where:
cc = SSI Sensor channel
aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value
mm = mot1*16 + mot2*32 + mot3*48

SHOME - SSI Sensor Home Count

HexCode: DB CANOpen id: 0x30DB

Description:

Contains a value that will be loaded in the selected SSI counter when a home switch is
detected, or when a Home command is received from the serial/USB, or issued from a
MicroBasic script. When the SSI sensor is used as absolute sensor (Absolute feedback),
this value will hold an offset with which the SSI sensor counter is subtracted.

Syntax Serial: ^SHOME cc nn

 	 ~SHOME [cc]

Syntax Scripting: setconfig(_SHOME, cc, nn)

Number of Arguments: 2

	 Argument 1: Channel
				 Min: 1 		 Max: Total Number of SSI Sensors

	 Argument 2: Value

				 Type: Signed 32-bit
				 Min: -2147M Max: 2147M
				 Default: 0

Where:
cc = SSI Sensor channel
nn = Counter value to be loaded, or Counter offset.

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 409

SLEN - SSI sensor’s frame total number of bits

HexCode: FF CANOpen Id: 0x30FF

Description:

This parameters sets the total number of bits of the SSI sensor’s frame. By setting a neg-
ative number it changes the polarity of the angle counter.

Syntax Serial: ^SLEN cc nn

 ~SLEN [cc]

Syntax Scripting: setconfig(_SLEN, cc, nn)

Number of Arguments: 2

Argument 1: Channel

 Type: Unsigned 8-bit

 Min: 1 Max: Total Number of SSI sensors

Argument 2: Value

 Type: Signed 8-bit

 Min: -47 Max: 47

Where:

cc = SSI Sensor channel

nn = SSI frame’s number of bits

SLL - SSI Sensor Min Limit

HexCode: D7 CANOpen id: 0x30D7

Description:

Defines a minimum count value at which the controller will trigger an action when the
counter dips below that number. This feature is useful for setting up virtual or soft limit
switches. This value, together with the SSI Sensor High Count Limit, are also used in
the position mode to determine the travel range when commanding the controller with
a relative position command. In this case, the SSI Sensor Low Limit Count is the desired
position when a command of -1000 is received.

Syntax Serial: ^SELL cc nn

		 ~SLL [cc]

Syntax Scripting: setconfig(_SLL, cc, nn)

Number of Arguments: 2

Commands Reference

410	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

	 Argument 1: Channel
				 Min: 1 		 Max: Total Number of Encoders

	 Argument 2: Value

				 Type: Signed 32-bit

				 Min: -2147M Max: 2147M
				 Default: -20000

Where:
cc = SSI Sensor channel
nn = SSI Counter value

Example:

^SLL 1 -100000 : Set SSI Sensor 1 low limit to minus 100000

SLLA - SSI Sensor Action at Min

HexCode: D9 CANOpen id: 0x30D9

Description:

This parameter lets you select what kind of action should be taken when the low limit
count is reached on the SSI Sensor. The list of action is the same as in the DINA digital
input action list Embedded in the parameter is the motor channel(s) to which the action
should apply.

Syntax Serial: ^SLLA cc (aa + mm)

		 ~SLLA [cc]

Syntax Scripting: setconfig(_SLLA, cc, aa)

Number of Arguments: 2

	 Argument 1: Channel
				 Min: 1 	 Max: Total Number of SSI Sensors

	 Argument 2: Action

			 Type: Unsigned 8-bit
			 Min: 0 		 Max: 255
			 Default: 0 = No action

Where:
cc = SSI Sensorchannel
aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 411

8: Load counter with home value
mm = mot1*16 + mot2*32 + mot3*64

SMOD - SSI Sensor Usage

HexCode: D6 CANOpen id: 0x30D6

Description:

This parameter defines what use the SSI Sensor is for. The encoder can be used to set
command or to provide feedback (speed or position feedback). The use of SSI Sensor
as feedback devices is the most common. If absolute Feedback option is set then the
feedback will back the absolute value of the SSI Sensor, which is useful for Closed Loop
Position Modes. Embedded in the parameter is the motor to which the SSI Sensor is as-
sociated.

Syntax Serial: ^SMOD cc (aa + mm)

	 ^SMOD [cc]

Syntax Scripting: setconfig(_SMOD, cc, aa)

Number of Arguments: 2

	 Argument 1: Channel
				 Min: 1 		 Max: Total Number of SSI Sensors

	 Argument 2: Use

				 Type: Unsigned 8-bit
				 Min: 0 Max: 255
				 Default: 0 = Unused

Where:

cc = SSI Sensor channel
aa =
0: Unused
1: Command
2: Feedback
3: Absolute Feedback
mm = mot1*16 + mot2*32 + mot3*64

Example:

^SMOD 1 19 = Encoder used as absolute feedback for channel 1

SSTA - SSI Counter start bit position

HexCode: 100 CANOpen Id: 0x3100

Description:

This parameter sets the position of the first bit of the angle counter inside the SSI frame.

Commands Reference

412	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial: ^SSTA cc nn

 ~SSTA [cc]

Syntax Scripting: setconfig(_SSTA, cc, nn)

Number of Arguments: 2

Argument 1: Channel

 Type: Unsigned 8-bit

 Min: 1 Max: Total Number of SSI sensors

Argument 2: Value
 Type: Unsigned 8-bit

 Min: 0 Max: 32

Where:

cc = SSI Sensor channel

nn = Angle Counter’s first bit position

THLD - Short Circuit Detection Sensitivity

HexCode: 04 CANOpen id: 0x3004

Description:

This configuration parameter sets the level for the short circuit detection sensitivity. There
are 3 sensitivity levels from 0 to 2.

•	 If set as High Sensitivity (0, default), then it works as an over-current threshold
detector. The current threshold is defined at each product’s datasheet. So if current
goes above that threshold the short fault is triggered.

•	 If set as Medium Sensitivity (1) then when the current goes beyond the current
threshold, the controller deactivates the MOSFETs for 5ms and then recovers. If
that happens more than 3 times in a 128ms period then short fault is triggered.

•	 If set as Low Sensitivity (2) then when the current goes beyond the current thresh-
old, the controller deactivates the MOSFETs for 5ms and then recovers. If that hap-
pens more than 7 times in a 128ms period then short fault is triggered.

Syntax Serial: ^THLD nn

 ~THLD

Syntax Scripting: setconfig(_THLD, nn)

Number of Arguments: 1

Argument 1: Threshold Type: Unsigned 8-bit Min: 0 Max: 2 Default: 0 = High Sensitivity

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 413

Where:

nn =

0: High sensitivity

1: Medium sensitivity

2: Low sensitivity

Example:

^THLD 1 : Set short circuit detection sensitivity to medium.

TNM - Motor Torque Constant

HexCode: DF CANOpen id: 0x30DF

Description:

This configuration parameter sets the motor torque constant. It is a value with which we
can convert the peak motor current (A) to torque (NM) and vice versa. This value is in mil-
iNm/Amps and is usually referred in the motor datasheets. The conversion is used by the
TC and TSL commands and TRQ query.

Note: In the motor torque constant, the peak amplitude of motor current is considered,
not the RMS motor current value.

Syntax Serial: ^TNM cc nn

 ~TNM cc

Syntax Scripting: setconfig(_TNM, cc, nn)

Number of Arguments: 2

Argument 1: Channel

			 Min: 1	 Max: Total Number of Motors

Argument 2: Torque Constant Type: Signed 32-bit

			 Min: 0	 Default: 1000 = 1Nm/Amps

Where:

cc = Motor channel
nn = Motor Torque Constant (miliNm/Amps)

Example:

^TNM 1 1523: Set torque constant for motor 1 to 1.523 Nm/Amps.

Commands Reference

414	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TPAL - Time for Amps Limit

HexCode: FB CANOpen id: 0x30FB

Description:

Set the maximum time that motor can handle the maximum current as configured in the
ALIM configuration command. This value is used for the I2T protection. For more details
check chapter “I2T Protection in SECTION 7. If set to 0 I2T protection is disabled.

Syntax Serial: ^TPAL cc nn

 ~TPAL cc

Syntax scripting: setconfig(_TPAL,cc,nn)

Argument 1: Channel Type: Unsigned 8-bit

 Min: 1 Max: Total Number of Motors

Argument 2: Current Type: Unsigned 32-bit

	 Default: 0

Where:

cc=Motor channel
nn=Time in seconds

Example:

^TPAL 1 5. Set maximum time the motor can handle ALIM Amps at 5 seconds.

UVL - Undervoltage Limit

HexCode: 03 CANOpen id: 0x3003

Description:

Sets the voltage below which the controller will turn off its power stage. The voltage is
entered as a desired voltage value multiplied by 10. Undervoltage condition is cleared as
soon as voltage rises above the limit.

Syntax Serial: ^UVL nn
		 ~UVL

Syntax Scripting: setconfig(_UVL, nn)

Number of Arguments: 1

Argument 1: Voltage
	 Type: Unsigned 16-bit
	 Min: 50 = 5.0V	 Max: Max Voltage in Product
Datasheet
	 Default: 50 = 5.0V

Where:

nn = Volts *10

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 415

Example:

^UVL 100 : Set undervoltage limit to 10.0 V

Brushless Specific Commands

TABLE 15-39. Brushless Specific Commands

Command Arguments Description

BADJ Channel Angle Brushless Angle Zero Adjust

BADV Channel Value Brushless timing angle adjust

BFBK Channel Sensor Brushless Sinusoidal Angle Sensor

BHL Channel Value Brushless Internal Sensor Max Limit

BHLA Channel Action Brushless Internal Sensor Action at Max

BHOME Channel Value Brushless Internal Sensor Home Count

BLL Channel Value Brushless Internal Sensor Min Limit

BLLA Channel Action Brushless Internal Sensor Action at Min

BMOD Channel Mode Brushless Switching Mode

BPOL Channel NbrPoles Number of pole pairs

BZPW Channel Amps Brushless Reference Seek Power

HPO InputNbr Value Hall Sensor Position Type

FWVR Channel Value Field Weakening Voltage Ratio

HSAT InputNbr Value Hall Sensor Angle Table

HSM InputNbr Value Hall Sensor Map

KIF PID Channel Gain Current PID Integral Gain

KPF PID Channel Gain Current PID Proportional Gain

LD Channel Value D-axis motor Inductance

LQ Channel Value Q-axis motor Inductance

PSA Channel Angle Phase Shift Angle

MXPW Channel Value Max Output Power at Constant Power
Region

RS Channel Value Motor Stator Resistance

SPOL Channel Poles SinCos/SSI Sensor Pole Pairs

SWD InputNbr Value Swap Windings

TID Channel Amps FOC Target Id

VK Channel Value Motor Voltage constant

ZSMA Channel Value Cos Amplitude

ZSMC InputNbr Value SinCos Calibration

BADJ - Brushless Angle Zero Adjust

HexCode: 60 CANOpen id: 0x3060

Description:

When being in sinusoidal mode and Sin/Cos, Resolver or SSI feedback sensors are used
or in Hall+Encoder Trapezoidal mode, this configuration command stores results of auto-
matic zero degrees angle search after performing the Motor/Sensor Setup (%clmod 2/3 or

Commands Reference

416	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

!mss 1/2). The angle represents the mechanical offset between the sensor’s zero position
and the rotor’s zero position. The value is in electrical degrees ranging from 0 to 511 for a
full electrical turn. The value can then be fine tuned manually.

Syntax Serial: ^BADJ cc nn
		 ~BADJ [cc]

Syntax Scripting: setconfig(_BADJ, cc, nn)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Angle	
	 Type: Signed 16-bit

	 Min: -511	 Max: 511
	 Default: 0

Where:

cc = Motor channel
nn = Angle

Example:

^BADJ 1 220 : Manually set the zero to 220 degrees

BADV - Brushless timing angle adjust

HexCode: 61 CANOpen id: 0x3061

Description:

When operating in sinusoidal mode, this parameter shifts by number of degrees to the 3
phases rotating magnetic field. This value works symmetrically to produce the same re-
sults in both rotation direction. The value is in electrical degrees ranging from 0 to 511 for
a full electrical turn.

Syntax Serial: ^BADV cc nn
		 ~BADV [cc]

Syntax Scripting: setconfig(_BADV, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	
	 Type: Signed 16-bit
	 Min: -511	 Max: 511

	 Default: 0

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 417

Where:

cc = Motor channel
nn = Angle

Example:

^BADV 1 20 : Advance motor 1 timing by 20 degrees

BFBK - Brushless Sinusoidal Angle Sensor

HexCode: 63 CANOpen id: 0x3063

Description:

Selects the type of rotor angle sensor to be used for brushless motors when operated in
sinusoidal mode.

Syntax Serial: ^BFBK cc nn
		 ~BFBK [cc]

Syntax Scripting: setconfig(_BFBK, cc)

Number of Arguments:

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Sensor	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 4
	 Default: 0 = Encoder

Where:

cc = Motor channel
nn =
0: Encoder
1: Hall
2: Hall + Encoder
3: SPI/SSI sensor
4: Sin/Cos sensor
5: Resolver

BHL - Brushless Internal Sensor Max Limit

HexCode: 3E CANOpen id: 0x303E

Description:

This parameter allows you to define a minimum Internal Sensor count value at which the
controller will trigger an action when the counter rises above that number. This feature is
useful for setting up virtual or soft limit switches. This value, together with the respective
Min Limit, are also used in the position mode to determine the travel range when com-
manding the controller with a relative position command. In this case, the Max Limit is
the desired position when a command of 1000 is received.

Commands Reference

418	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial: ^BHL cc nn
		 ~BHL [cc]

Syntax Scripting: setconfig(_BHL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M
	 Default: 20000

Where:

cc = Motor channel
nn = Counter value

Example:

^BHL 10000 : Set brushless Internal Sensor Max Limit to 10000 counts

Note:

Counter is not an absolute position. A homing sequence is necessary to set a reference
position.

BHLA - Brushless Internal Sensor Action at Max

HexCode: 40 CANOpen id: 0x3040

Description:

This parameter lets you select what kind of action should be taken when the max limit
is reached on the Internal Sensor counter. The list of action is the same as in the DINA
digital input action list. Embedded in the parameter is the motor channel(s) to which the
action should apply.

Syntax Serial:	 ^BHLA cc nn
	 ~BHLA [cc]

Syntax Scripting: setconfig(_BHLA, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motor

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 419

Where:

cc = Motor channel

aa =
0 : No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*64

Example:

^BHLA 1 36 : Forward limit switch for motor 2 (4 + 32)

BHOME - Brushless Internal Sensor Home Count

HexCode: 3C CANOpen id: 0x303C

Description:

This parameter contains a value that will be loaded in the internal sensor counter when a
home switch is detected, or when a Home command is received from the serial/ USB, or
issued from a MicroBasic script.

Syntax Serial: ^BHOME cc nn
		 ~BHOME [cc]

Syntax Scripting: setconfig(_BHOME, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M
	 Default: 0

Where:

cc = Motor channel
nn = Counter value to be loaded

Example:

^BHOME 1 10000 : load Internal Sensor counter with 10000 when Home command is
received

Commands Reference

420	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Note:

Change counter only while in open loop if brushless counter is used for speed or position
feedback

BLL - Brushless Internal Sensor Min Limit

HexCode: 3D CANOpen id: 0x303D

Description:

This parameter defines a minimum Internal Sensor count value at which the controller
will trigger an action when the counter dips below that number. This feature is useful for
setting up virtual or soft limit switches. This value, together with the respective Max Limit,
are also used in the position mode to determine the travel range when commanding the
controller with a relative position command. In this case, the Min Limit is the desired posi-
tion when a command of -1000 is received.

Syntax Serial: ^BLL cc nn
		 ~BLL [cc]

Syntax Scripting: setconfig(_BLL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M
	 Default: -20000

Where:

cc = Motor channel
nn = Counter value

Example:

^BLL 1 -10000 : Set motor 1 Internal Sensor min limit to -10000 counts

Note:

Counter is not an absolute position. A homing sequence is necessary to set a reference
position.

BLLA - Brushless Internal Sensor Action at Min

HexCode: 3F CANOpen id: 0x303F

Description:

This parameter lets you select what kind of action should be taken when the min limit
is reached on the Internal Sensor counter. The list of action is the same as in the DINA
digital input action list. Embedded in the parameter is the motor channel(s) to which the
action should apply.

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 421

Syntax Serial: ^BLLA cc aa
		 ~BLLA [cc]

Syntax Scripting: setconfig(_BLLA, cc, aa)

Number of Arguments: 2

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:

cc = Motor channel
aa =
0: No action
1: Quick stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*64

Example:

^BLLA 1 37 : Reverse limit switch for motor 2 (5 + 32)

BMOD - Brushless Switching Mode

HexCode: 5F CANOpen id: 0x305F

Description:

Selects the switching mode when controlling brushless motors. Additional settings apply
for each mode.

Syntax Serial: ^BMOD cc nn
		 ~BMOD [cc]

Syntax Scripting: setconfig(_BMOD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Commands Reference

422	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 2
	 Default: 0 = Trapezoidal

Where:

cc = Motor channel

nn =
0: Trapezoidal
1: Sinusoidal

Note:

After changing this setting, the motor will perform a reference searched when selecting
sinusoidal mode with encoder feedback.

BPOL - Number of Pole Pairs

HexCode: 39 CANOpen id: 0x3039

Description:

This parameter is used to define the number of pole pairs of the brushless motor connect-
ed to the controller. This value is used to convert the hall sensor transition counts into ac-
tual RPM and number of motor turns. Entering a negative number will invert the counter
and the measured speed polarity.

Syntax Serial: ^BPOL cc nn
		 ~BPOL

Syntax Scripting: setconfig(_BPOL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Number of Pole Pairs	
	 Type: Signed 8-bit

	 Min: -127	 Max: +127
	 Default: 2

Where:

cc = Motor channel

nn = Number of pole pairs

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 423

BZPW - Brushless Reference Seek Power

HexCode: 62 CANOpen id: 0x3062

Description:

Sets the level of Amps to be applied to the motor coils during Motor/Sensor Setup. Mo-
tor/Sensor Setup is automatically initiated every time the controller is powered up when
sinusoidal with encoder feedback is selected. Motor/Sensor Setup in necessary to be per-
formed only once in the other cases.

Syntax Serial: ^BZPW cc nn
		 ~BZPW [cc]

Syntax Scripting: setconfig(_BZPW, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Amps	
	 Type: Unsigned 16-bit

	 Min: 0	
	 Default: 50 = 5.0A

Where:

cc = Motor channel
nn = Amps x 10

FWVR - Field Weakening Voltage Ratio

Hex Code: F5 CANOpen id: 0x30F5

Description:

This parameter defines the percentage of the maximum power (stator voltage) to be regu-
lated by the automatic field weakening control. Value equal to 1000 (100%) means that no
field weakening control will be applied.

Syntax Serial: ^FWVR cc nn

 ~FWVR[cc]

Syntax Scripting: setconfig(_FWVR, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 Max: Total Number of Motors

Commands Reference

424	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 2: Field Weakening Voltage Ratio

	 Type: Unsigned 16-bit

	 Min: 750 Max: 1000

	 Default: 1000

where:

cc=Motor channel

nn=Field Weakening Voltage ratio from 750 (75%) to 1000 (100%) range

Example:

^FWVR 1 900: Configure the voltage level for field weakening control at 90% of the maxi-
mum motor output voltage (Power) applied.

HPO - Hall Sensor Position Type

HexCode: A5 CANOpen id: 0x30A5

Description:

This parameter selects the Hall sensor spacing in the motor. Practically all brushless mo-
tors use Hall sensors with 120 degrees spacing. Some motors have Hall sensors with 60
degrees. Change this parameter only if the motor’s manual clearly specifies 60 degrees
spacing.

Syntax Serial: ^HPO cc nn

	 ~HPO [cc]

Syntax Scripting: setconfig(_HPO, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Hall Position

	 Type: Unsigned 8-bit

	 Min: 0 	 Max: 1

	 Default: 0

Where:

cc = Motor channel

nn = Hall Sensor Position

	 0: 120degree

	 1: 60degree

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 425

Example:

^HPO 1 1: Configure that the Hall Sensor of motor 1 are spaced by 60 degrees.

HSAT - Hall Sensor Angle Table

HexCode: C2 CANOpen id: 0x30C2

Description:

This parameter is calculated automatically during the motor sensor setup when Hall Sinu-
soidal or Hall+Encoder Sinusoidal is configured. It represents the electrical angle (range
0-512) at each hall transition at each direction.

Syntax Serial:	 ^HSAT cc nn

		 ~HSAT [cc]

Syntax Scripting: setconfig(_HSAT, cc, nn)

Number of Arguments: 2

Argument 1: Input Value

	 Min: 1		 Max: Total Number of Motors * 12

Argument 2: Electrical Angle

	 Type: Unsigned 16-bit

	 Min: 0 		 Max: 511

Where:

cc = Input Value

1: Hall Transition 5-1 for motor channel 1

2: Hall Transition 3-2 for motor channel 1

3: Hall Transition 1-3 for motor channel 1

4: Hall Transition 6-4 for motor channel 1

5: Hall Transition 4-5 for motor channel 1

6: Hall Transition 2-6 for motor channel 1

7: Hall Transition 3-1 for motor channel 1

8: Hall Transition 6-2 for motor channel 1

9: Hall Transition 2-3 for motor channel 1

10: Hall Transition 5-4 for motor channel 1

11: Hall Transition 1-5 for motor channel 1

12: Hall Transition 4-6 for motor channel 1

13: Hall Transition 5-1 for motor channel 2

...

24: Hall Transition 4-6 for motor channel 2

Commands Reference

426	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

nn = Electrical Angle

Example:

^HSAT 1 452: Set the electrical angle 452 for the hall transition 5-1 for motor channel 1.

HSM - Hall Sensor Map

HexCode: A3 CANOpen id: 0x30A3

Description:

Configure this parameter to match the ABC hall sensor cable pattern with the UVW mo-
tor windings wire pattern connected to the controller. For each hall sensor cable order
and motor wire order, there are 6 combinations, one of which will make the motor spin
smoothly and efficiently in both directions. Try each of the 6 available values of HSM (0-
5) and retain the one that will make the motor spin in both directions while drawing the
same low current. Applicable only in Hall Trapezoidal mode.

Syntax Serial: ^HSM cc nn

	 ~ HSM [cc]

Syntax Scripting: setconfig(_HSM, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Hall Sensor Map

	 Type: Unsigned 8-bit

	 Min: 0 	 Max: 5

	 Default: 0

Where:

cc = Motor channel

nn = Motor’s Hall Sensor Map

Example:

^HSM 1 1: Set Hall Sensor Map for motor 1 to value 1.

KIF - Current PID Integral Gain

HexCode: 8E CANOpen id: 0x308E

Description:

Sets the Current PID’s Integral Gain. The value is set as the gain multiplied by 10^4. On
brushless motor controller operating in sinusoidal mode or ACIM motor controllers, two
gains can be set for each motor channel, in order to control the Flux and Torque current.

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 427

On DC brushed controllers or in brushless motor controllers when operating in trapezoidal
mode the gains for the Torque current are used only.

Syntax Serial: ^KIF cc nn
		 ~KIF [cc]

Syntax Scripting: setconfig(_KIF, cc)

Number of Arguments:

Argument 1: AmpsChannel
	 Min: 1	 Max: 2 * Total Number of Motors

Argument 2: Gain Type: Unsigned 32-bit

			 Min: 0	 Max: 2,000,000,000	 Default: 0

Where:
cc (single channel) =
1: Flux Integral Gain
2: Torque Integral Gain
cc (dual channel) =
1: Flux Integral Gain for motor 1
2: Flux Integral Gain for motor 2
3: Torque Integral Gain for motor 1
4: Torque Integral Gain for motor 2
nn = Gain * 10,000

Example:

^KIF 1 2300: Set motor channel 1 Flux Integral Gain to 0.23.

KPF - Current PID Proportional Gain

HexCode: 8D CANOpen id: 0x308D

Description:

Sets the Current PID’s Proportional Gain. The value is set as the gain multiplied by 10^4.
On brushless motor controller operating in sinusoidal mode, two gains can be set for each
motor channel, in order to control the Flux and Torque current. On DC brushed controllers
or in brushless motor controllers when operating in trapezoidal mode the gains for the
Torque current are used only.

Syntax Serial: ^KPF cc nn
		 ~KPF [cc]

Syntax Scripting: setconfig(_KPF, cc)

Number of Arguments:

Argument 1: AmpsChannel
	 Min: 1	 Max: 2 * Total Number of Motors

Argument 2: Gain Type: Unsigned 32-bit

	 Min: 0	 Max: 2,000,000,000 Default: 0

Commands Reference

428	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

cc (single channel) =
1: Flux Proportional Gain
2: Torque Proportional Gain
cc (dual channel) =
1: Flux Proportional Gain for motor 1
2: Flux Proportional Gain for motor 2
3: Torque Proportional Gain for motor 1
4: Torque Proportional Gain for motor 2
nn = Gain * 10,000

Example:

^KPF 4 2300: Set motor channel 2 Torque Proportional Gain to 0.23.

LD - Motor d-axis Inductance

HexCode: EC CANOpen id: 0x30EC

Description:

Set the d-axis motor inductance. This configuration command is necessary for IPM motor
operation, decoupling control and field weakening feedforward function If value is set
to 0 then the motor operates as brushless dc motor with Id reference command set, by
default, to 0.

Syntax Serial: ^LD cc nn

	 ~LD [cc]

Syntax Scripting: setconfig(_LD, cc, nn)

Number of Arguments: 2

Argument 1: Channel Min: 1 Max: Total Number of Motors

Argument 2: D-axis Motor Inductance

Type: Unsigned 16-bit

Min: 0 Max: 65535

Default: 0

Where:

cc = Motor channel

nn = D-axis motor inductance in Henry * 1,000,000

Example:

^LD 1 750 : Set the d-axis motor inductance to 0,000750 H = 750 uH

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 429

LQ - Motor q-axis Inductance

HexCode: ED CANOpen id: 0x30ED

Description:

Set the q-axis motor inductance. This configuration command is necessary for IPM motor
operation, decoupling control and field weakening feedforward function. If value is set
to 0 then the motor operates as brushless dc motor with Id reference command set, by
default, to 0.

Syntax Serial: ^LQ cc nn

	 ~LQ [cc]

Syntax Scripting: setconfig(_LQ, cc, nn)

Number of Arguments: 2

Argument 1: Channel Min: 1 Max: Total Number of Motors

Argument 2: Q-axis Motor Inductance

Type: Unsigned 16-bit

Min: 0 Max: 65535

Default: 0

Where:

cc = Motor channel

nn = Q-axis motor inductance in Henry * 1,000,000

Example:

^LQ 1 950 : Set the q-axis motor inductance to 0,000950 H = 950 uH

MXPW - Maximum Motor Output Power at Constant Power

Hex Code: F6 CANOpen id: 0x30F6

Description:

This parameter defines the maximum allowed motor output power (P[W] = speed [rad/s]*
torque[Nm]) during the motor’s operation, covering both constant torque and constant
power regions. The motor drive will regulate the motor current based on the configured
torque constant (Kt [Nm/A rms]), maximum power parameters, and motor angular speed
(ω[rad/s]) as follows:

I_max [A rms] = P_max [W] / ω [rad/s] * Kt [Nm/A rms]

The value should be set according to the datasheet parameter. If the maximum power is
not directly provided, it can be derived from the motor’s torque-speed curve, by mutiply-
ing the maximum torque with the maximum speed at the maximum power point.

Commands Reference

430	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial: ^MXPW cc nn

 ~MXPW[cc]

Syntax Scripting: setconfig(_MXPW, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 Max: Total Number of Motors

Argument 2: Maximum Motor Output Power

	 Type: Unsigned 32-bit

	 Min: 0 Max: Dependent on each controller power ratings

	 Default: Dependent on each controller power ratings

where:

cc=Motor channel

nn=Maximum Motor Output Power (W) * 10

Example:

^MXPW 1 15000: Configure the maximum motor output power at 1500 W.

PSA - Phase Shift Angle

HexCode: E1 CANOpen id: 0x30E1

Description:

When being in sinusoidal mode and Sin/Cos or Resolver feedback sensors are used, this
configuration command defines the Phase Shift Angle between the Sin and Cos signals.
The value is in degrees ranging from 0 to 511. If the sensor is a regular Sin/Cos or Resolver
Sin/Cos sensor, the phase shift angle is 90o degrees, so we need to configure 90*512/360
= 128. If not then the sensor manufacturer should inform about the phase shift angle.

Syntax Serial: ^PSA cc nn

 ~PSA [cc]

Syntax Scripting: setconfig(_PSA, cc, nn)

Number of Arguments:

Argument 1: Channel

Min: 1 Max: Total Number of Motors

Argument 2: Angle

Type: Signed 16-bit

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 431

Min: -511 Max: 511

Default: 128

Where:

cc = Motor channel
nn = Angle

Example:

^PSA 1 171 : Set the phase shift angle to 171*360/512 = 120o degrees.

RS - Motor Stator Resistance

HexCode: EB CANOpen id: 0x30EB

Description:

Set the motor phase resistance. This value is used only in motor characterization Robo-
run+ utility tool for FOC gains calculation.

Syntax Serial: ^RS cc nn

	 ~RS [cc]

Syntax Scripting: setconfig(_RS, cc, nn)

Number of Arguments: 2

Argument 1: Channel Min: 1 Max: Total Number of Motors

Argument 2: Motor phase resistance

Type: Unsigned 16-bit

Min: 0 Max: 65535

Default: 0

Where:

cc = Motor channel

nn = Motor phase resistance in Ohm * 1,000

Example:

^RS 1 500 : Set the motor phase resistance to 0,5 Ohm = 500 mOhm

Commands Reference

432	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

SPOL - SinCos/SSI Sensor Pole Pairs

HexCode: 41 CANOpen id: 0x3041

Description:

Number of pole pairs of the Sin/Cos, Resolver or SSI angle sensor used in sinusoidal
mode with brushless motors.

Syntax Serial: ^SPOL cc nn
		 ~SPOL [cc]

Syntax Scripting: setconfig(_SPOL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors

Argument 2: Number	
	 Type: Unsigned 8-bit

	 Min: 1	 Max: 255
	 Default: 1

Where:

cc = Motor channel
nn = Number of pole pairs

SWD - Swap Windings

HexCode: A4 CANOpen id: 0x30A4

Description:

The concept of swap windings (can also be termed as sensor polarity) is a relative rela-
tionship between sensor direction and stator magnetic field rotational direction. During
calibration if angle, reported by the sensor, is changing in same direction as angle com-
manded to the stator then Swap Windings should be “None”, else “Swapped”.

In case of Hall + Encoder, two different Swap Windings are needed, one for hall and one
for encoder. So, instead we use 2 bits of same variable Bit 1 for Hall and Bit 0 for Encoder.
The following table shows the truth table for swap windings

TABLE 15-40. SWD values

SWD
Value BIT 1 BIT 0

Swap for Hall
(Bit 1)

Swap for
Encoder (Bit 0) Meaning

0 0 0 NO NO None

1 0 1 NO YES Swapped

2 1 0 YES NO Hall only Swapped

3 1 1 YES YES Hall+Encoder Swapped

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 433

Syntax Serial: ^SWD cc nn

	 ~ SWD [cc]

Syntax Scripting: setconfig(_SWD, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 		 Max: Total Number of Motors

Argument 2: Swap Windings

	 Type: Unsigned 8-bit

	 Min: 0 Max: 3

	 Default: 0

Where:

cc = Motor channel

nn = Motor’s Swap Windings

0: None, Angle up-counting for clockwise direction

1: Swapped, Angle down-counting for clockwise direction

2:Hall only Swapped, Angle up-counting for clockwise direction for encoder and Angle
down-counting for clockwise direction for Hall sensor.

3:Hall+Encoder Swapped, Angle down-counting for clockwise direction for encoder and
Angle down-counting for clockwise direction for Hall sensor.

Example:

^SWD 1 1: Set angle down-counting for clockwise direction for motor 1.

TID - FOC Target Id

HexCode: 8F CANOpen id: 0x308F

Description:

In brushless motors operating in sinusoidal mode, this command sets the desired Flux
(also known as Direct Current Id) for Field Oriented Control. This value must be 0 in typical
application. A non-zero value creates field weakening and can be used to achieve higher
rotation speed.

Syntax Serial: ^TID cc nn
		 ~TID [cc]

Syntax Scripting: setconfig(_TID, cc, nn)

Number of Arguments: 2

Commands Reference

434	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: Channel
	 Min: 1	 Max: Total Number of Motors

Argument 2: Amps	
	 Type: Signed 32-bit

	 Min: 0	
	 Default: 0

Where:

cc = Motor Channel
nn = Amps * 10

VK - Motor Voltage constant

HexCode: EE CANOpen id: 0x30EE

Description:

Set the motor voltage constant. This parameter is necessary for IPM motor operation,
decoupling control and field weakening feedforward function. This constant considers
the peak amplitude of induced phase to phase motor back-emf per 1000 rpm mechanical
speed. It is typically included in motor manufacturer’s datasheet.

Syntax Serial: ^VK cc nn

	 ~VK [cc]

Syntax Scripting: setconfig(_VK, cc, nn)

Number of Arguments: 2

Argument 1: Channel Min: 1 Max: Total Number of Motors

Argument 2: Motor voltage constant

Type: Unsigned 32-bit

Min: 0 Max: 2000000

Default: 0

Where:

cc = Motor channel

nn = Motor voltage constant in V/krpm * 1000

Example:

^VK 1 14000 : Set the motor voltage constant to 14 V/krpm

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 435

ZSMA - Cos Amplitude

HexCode: E5 CANOpen id: 0x30E5

Description:

This parameter contains the amplitude of the Cosine signal (SinCos sensor), which along
with the values of ZSMC is used in order to calculate the signal quality (see SEC - Read
Sensor Errors).

Syntax Serial:	 ^ZSMA cc nn

		 ~ZSMA [cc]

Syntax Scripting: setconfig(_ZSMA, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1		 Max: Total Number of Motors

Argument 2: Value

	 Type: Signed 16-bit

Where:

cc = Channel

nn = Calibration Value

Example:

^ZSMA 2 1800: Set the amplitude of the Cos signal of the SinCos sensor of motor 2 to
1800.

ZSMC - SinCos Calibration

HexCode: 46 CANOpen id: 0x3046

Description:

This parameter contains Sin/Cos calibration values that are captured after the execution of
the Motor/Sensor Setup. Values are not to be altered manually. When non-zero values are
returned after querying ZSMC, this indicates that the setup has been successfuly com-
pleted at one time or another.

Syntax Serial:	 ^ZSMC cc nn
		 ~ZSMC [cc]

Syntax Scripting: setconfig(_ZSMC, cc)

Number of Arguments:

Commands Reference

436	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: InputNbr
	 Min: 1	 Max: 6

Argument 2: Value	
	 Type: Signed 16-bit

Where:

cc =
1: Sin Zero Point for motor 1
2: Cos Zero Point for motor 1
3: SinCos Ratio for motor 1
4: Sin Zero Point for motor 2
5: Cos Zero Point for motor 2
6: SinCos Ratio for motor 2

nn = Calibration value

AC Induction Specific Commands

TABLE 15-41. AC Induction Specific Commands

Command Arguments Description

BFBK Channel Mode AC Induction Operating Mode

ILM Inductance Mutual Inductance

ILLR Inductance Rotor Leakage Inductance

IRR Resistance Rotor Resistance

MPW MotorPower Minimum Power

MXS SlipFrequency Optimal Slip Frequency

RFC Channel Amps Rotor Flux Current

VPH Channel Ratio AC Induction Volts per Hertz

BFBK - AC Induction Operating Mode

HexCode: 63 CANOpen id: 0x3063

Description:

For AC Induction motors this parameter selects the operating mode.

Syntax Serial:	 ^BFBK cc nn

		 ~BFBK [cc]

Syntax Scripting: setconfig(_BFBK, cc)

Number of Arguments:

	 Argument 1: Channel

	 Min: 1			 Max: Total Number of Motors

	 Argument 2: Sensor

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 437

	 Type: Unsigned 8-bit

	 Min: 0 Max: 4

	 Default: 0 = Volts Per Hertz

Where:

cc = Motor channel

nn =

0: Volts Per Hertz

1: Constant Slip Speed

2: FOC Torque

3: FOC Speed

ILM - Mutual Inductance

HexCode: 9B CANOpen id: 0x309B

Description:

This parameter is only used for AC Induction controllers when operating in FOC mode and
contains motor’s mutual inductance (coupled to both stator and rotor).

Syntax Serial: ^ILM cc nn

	 ~ ILM [cc]

Syntax Scripting: setconfig(_ILM, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Mutual Inductance

	 Type: Unsigned 32-bit

	 Min: 0 	 Max: 10000

	 Default: 10

Where:

cc = Motor channel

nn = Motor’s Mutual Inductance in μH.

Example:

^ILM 1 961: Set Mutual Inductance of motor 1 to value 961μH.

Commands Reference

438	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

ILLR - Rotor Leakage Inductance

HexCode: 9A CANOpen id: 0x309A

Description:

This parameter is only used for AC Induction controllers when operating in FOC mode
and contains the rotor’s per phase leakage inductance of the motor. This value can be ob-
tained from the motor supplier.

Syntax Serial:	 ^ILLR cc nn

		 ~ ILLR [cc]

Syntax Scripting: setconfig(_ILLR, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Rotor Leakage Inductance

	 Type: Unsigned 32-bit

	 Min: 0 	 Max: 10000

	 Default: 10

Where:

cc = Motor channel

nn = Motor’s Rotor Leakage Inductance in μH.

Example:

^RFC 1 67: Set Rotor Leakage Inductance of motor 1 to value 67μH.

IRR - Rotor Resistance

HexCode: 99 CANOpen id: 0x3099

Description:

This parameter is only used for AC Induction controller when operating in FOC mode and
contains the resistance per phase of the rotor. This value can be obtained from the motor
supplier.

Syntax Serial: ^IRR cc nn

	 ~ IRR [cc]

Syntax Scripting: setconfig(_IRR, cc, nn)

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 439

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Rotor Resistance

	 Type: Unsigned 32-bit

	 Min: 1 	 Max: 500000

	 Default: 20000

Where:

cc = Motor channel

nn = Motor’s Rotor Resistance in micro-ohm.

Example:

^IRR 1 24500: Set Rotor Resistance of motor 1 to value 24500μΩ.

MPW - Minimum Power

HexCode: 97 CANOpen id: 0x3097

Description:

This parameter is only used for AC Induction controllers when operating in Volts per Hertz
mode. It defines a minimum PWM output value so that there is always a minimal of rotor
flux to create induction.

Syntax Serial: ^MPW cc nn

	 ~MPW [cc]

Syntax Scripting: setconfig(_MPW, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Minimum Power

	 Type: Unsigned 16-bit

	 Min: 0 	 Max: 1000

	 Default: 100

Commands Reference

440	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

cc = Motor channel

nn = Motor’s Minimum Power in % of PWM Level

Example:

^MPW 1 200: Set Minimum Power for motor 1 to value 20.0% PWM Level.

MXS - Optimal Slip Frequency

HexCode: 96 CANOpen id: 0x3096

Description:

This parameter is only used for AC Induction controllers. The optimal slip is the value that
the controller will work to maintain while operating in Constant Slip mode.

Syntax Serial: ^MXS cc nn

	 ~MXS [cc]

Syntax Scripting: setconfig(_MXS, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Optimal Slip Frequency

	 Type: Unsigned 16-bit

	 Min: 0 	 Max: 65535

	 Default: 50

Where:

cc = Motor channel

nn = Motor’s Optimal Slip Frequency in Hertz * 10

Example:

^MXS 1 60: Set Optimal Slip for motor 1 to value 6.0Hz

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 441

RFC - Rotor Flux Current

HexCode: 98 CANOpen id: 0x3098

Description:

This parameter is only used for AC Induction controller. This value is the stator current
component (Id) for rotor flux production when FOC modes are selected.

Syntax Serial: ^RFC cc nn

	 ~ RFC [cc]

Syntax Scripting: setconfig(_RFC, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Rotor Flux Current

	 Type: Unsigned 16-bit

	 Min: 0 	 Max: Max Amps in datasheet

	 Default: 10

Where:

cc = Motor channel

nn = Motor’s Rotor Flux Current in Amps * 10

Example:

^RFC 1 50: Set Rotor Flux Current for motor 1 to value 5A.

VPH - AC Induction Volts per Hertz

HexCode: 95 CANOpen id: 0x3095

Description:

This parameter is only used for AC Induction controllers. Each motor has as specification a
Volts per Hertz value with which the frequency can be determined when specific voltage
is applied.

Syntax Serial:	 ^VPH cc nn

		 ~VPH [cc]

Syntax Scripting: setconfig(_VPH, cc, nn)

	 Number of Arguments: 2

Commands Reference

442	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Argument 1: Channel

	 Min: 1		 Max: Total Number of Motors

Argument 2: VoltsPerHz

	 Type: Unsigned 16-bit

	 Min: 0 Max: 65535

	 Default: 20000

Where:

cc = Motor channel

nn = Motor’s Volts per Hertz * 1000

Example:

^VPH 1 200: Set Volts per Hertx to value 0.200

CAN/EtherCAT Communication Commands
This section describes all the configuration parameters uses for CANbus operation.

TABLE 15-42. CANbus Commands

Command Arguments Description

CAS Rate CANOpen Auto start

CBR BitRate CAN Bit Rate

CEN Mode CAN Mode

CGT Time CANOpen Guard Time

CHB HeartBeat CAN Heartbeat

CHBT Time Consumer Heartbeat Time

CHLA Action CAN Consumer Heartbeat Lost Action

CLSN Address CAN Listen Node ID

CNOD Address CAN Node ID

CSRT Rate MiniCAN SendRate

CTPS TPDOnbr Rate CANOpen TPDO SendRate

CTT None CANOpen Transmission Type

ECAT None EtherCAT Enable Mode

ECT None EtherCAT Cycle Time

EDID None EtherCAT Explicit Device ID

FSA None DS402 FSA

RPDC RPDOnbr Rate CANOpen RPDO COB-ID

RPDM RPDO Item CANOpen RPDO Mapping

TPDC TPDOnbr Rate CANOpen TPDO COB-ID

TPDM TPDO Item CANOpen TPDO Mapping

CAN/EtherCAT Communication Commands

	 Advanced Digital Motor Controller User Manual� 443

CAS - CANOpen Auto start

HexCode: 5A CANOpen id: 0x305A

Description:

Determines if device is an active CANOpen node at power up. When set, node is in oper-
ational state at power up without the need to receive a start command.

Syntax Serial: ^CAS nn
		 ~CAS

Syntax Scripting: setconfig(_CAS, nn)

Number of Arguments: 1

Argument 1: Rate
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 1
	 Default: 0 = Off

Where:
nn =
0: Device is in pre-operational state at power-up.
1: Device is in operational state at power up.

CBR - CAN Bit Rate

HexCode: 58 CANOpen id: 0x3058

Description:

Sets the CAN bus bit rate.

Syntax Serial: ^CBR nn
		 ~CBR

Syntax Scripting: setconfig(_CBR, nn)

Number of Arguments: 1

Argument 1: BitRate
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 5
	 Default: 3 = 250K

Where:

nn =
0: 1000K
1: 800K
2: 500K
3: 250K
4: 125K

Commands Reference

444	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

CEN - CAN Mode

HexCode: 56 CANOpen id: 0x3056

Description:

Enables CAN and selects the CAN protocol.

Syntax Serial:	 ^CEN nn
		 ~CEN

Syntax Scripting: setconfig(_CEN, nn)

Number of Arguments: 1

Argument 1: Mode
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 5

Where:

nn =
0: Disabled
1: CANOpen
2: MiniCAN
3: RawCAN
4: RoboCAN
5: MiniJ1939

CGT – CANOpen Guard Time

 HexCode: 9D 		 CANOpen Object: 100Ch, 100Dh, 0x309D

Description:

Configures the guard time and life time factor for CANOpen node guarding protocol.

 Syntax Serial ^CGT opt val

	 ~CGT [opt]

 Syntax Scripting SetConfig(_CGT, opt, val)

 val = GetConfig(opt)

 Arguments 2

 	 Argument 1: Option [1: guard time, 2: life time factor]

 	 Argument 2: Value

			 Type: Unsigned 16-bit

			 Min: 0

			 Max: 65535 for guard time, 255 for life time factor

 Example:

 ^CGT 1 1000_^CGT 2 5. Set guard time to 5000 ms (5 * 1000).

CAN/EtherCAT Communication Commands

	 Advanced Digital Motor Controller User Manual� 445

CHB - CAN Heartbeat

HexCode: 59 CANOpen id: 0x3059

Description:

Sets the rate in milliseconds at which the controller will send a heartbeat frame on the
CAN bus. Heartbeat is sent when either MiniCAN, RawCAN, CANOpen are selected. A
dedicated, non-user-alterable Heartbeat frame is sent when RoboCAN is selected.

Syntax Serial: ^CHB nn

Syntax Scripting: setconfig(_CHB, nn)

Number of Arguments: 1

Argument 1: HeartBeat
	 Type: Unsigned 16-bit
	 Min: 0	 Max: 65536
	 Default: 100ms

Where:

nn = Heartbeat rate in ms

CHBT – Consumer Heartbeat Time

 HexCode: 9E CANOpen Object: 1016h, 0x309E

Description:

Configures consumer heartbeat time. If the heartbeat time is 0 or the node-ID is 0 or
greater than 127 the corresponding object is not considered. The heartbeat time shall be
given in multiples of 1ms.

An attempt to configure several heartbeat times unequal 0 for the same node-ID the con-
troller will respond with SDO abort code.

 Syntax Serial ^CHBT cc nn

 ~CHBT [cc]

 Syntax Scripting SetConfig(_CHBT, cc, nn)

 Number of Arguments: 2

Argument 1: Index

	 Type: Unsigned 8-bit

	 Min: 1	 Max: 4, as controller supports monitoring up to 4 nodes.

Argument 2: Value

Commands Reference

446	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

	 Type: Unsigned 32-bit

	 Min: 0	 Max: 0x7FFFFF

Where:

cc=Monitoring Node

nn=Node in most significant 4 bytes and Hearbeat Time in less significant 4 bytes

 Example:

^CHBT 1 133072 Monitor node 2 with heartbeat time of 2000ms (0x07D0). 133072d =
0207D0h.

CHLA - CAN Consumer Heartbeat Lost Action

HexCode: EF CANOpen id: 0x30EF

Description:

This configuration is used in order to configure the action to be applied on motors once
the consumer heartbeat gets lost. If this happens then the command watchdog will
expire. Apart from that it can be configured whether Quick stop or emergency will be ap-
plied additionally to the motor.

Syntax Serial: ^CHLA nn

 ~CHLA

Syntax Scripting: setconfig(_CHLA, nn)

	 Number of Arguments: 1

	 Argument 1: Action

	 Type: Unsigned 8-bit

	 Min: 0 Max: 2

	 Default: 0 = No Action

Where:

nn =

0: No Action

1: Quick Stop

2: Emergency Stop

CLSN - CAN Listen Node ID

HexCode: 5B CANOpen id: 0x305B

Description:

In RawCAN and MiniCAN mode, this parameter filters the incoming frames in order to
capture only these originating from a given node address. In RawCAN, entering 0 disables
the filter and will cause all incoming frames to be captured.

CAN/EtherCAT Communication Commands

	 Advanced Digital Motor Controller User Manual� 447

Syntax Serial: ^CLSN nn
	 ~CSLN

Syntax Scripting: setconfig(_CLSN, nn)

Number of Arguments: 1

Argument 1: Address
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 127
	 Default: Product dependent

Where:

nn =
0: Listen to all nodes (RawCAN only)
1-127: Capture frames from specific node id only

CNOD - CAN Node ID

HexCode: 57 CANOpen id: 0x3057

Description:

Stores the product’s ID on the CAN bus.

Syntax Serial: ^CNOD nn
		 ~CNOD

Syntax Scripting: setconfig(_CNOD, nn)

Number of Arguments: 1

Argument 1: Address
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 127
	 Default: See datasheet

Where:

nn = Node address

CSRT - MiniCAN SendRate

HexCode: 5C CANOpen id: 0x305C

Description:

Rate, in ms, at which MiniCAN frames are sent.

Syntax Serial: ^CSRT nn
		 ~CSRT

Commands Reference

448	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Scripting: setconfig(_CSRT, nn)

Number of Arguments: 1

Argument 1: Rate
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 65536
	 Default: 100ms

Where:

nn = Rate in ms. No frames sent. if value is 0

CTPS - CANOpen TPDO SendRate

HexCode: 5D CANOpen id: 0x305D

Description:

Sets the send rate for each of the 8 TPDOs when CANOpen is enabled.

Syntax Serial: ^CTPS nn mm

Syntax Scripting: setconfig(_CTPS, nn, mm)

Number of Arguments: 2

Argument 1: TPDOnbr
	
	 Min: 1	 Max: 8

Argument 2: Rate	
	 Type: Unsingned 16-bit

	 Min: 0	 Max: 65536
	 Default: 0 = Off

Where:

nn = TPDO number, 1 to 8
mm = Rate in ms

Note:

If mm = 0, the TPDO is not transmitted

CTT – CANOpen Transmission Type

HexCode: 70 CANOpen id: 0x3070

Description:

Sets the transmission type of the respective TPDOs.

Syntax Serial: ^CTT nn mm

Syntax Scripting: setconfig(_CTT, nn, mm)

Number of Arguments: 2

CAN/EtherCAT Communication Commands

	 Advanced Digital Motor Controller User Manual� 449

Argument 1: TPDOnbr

Min: 1 Max: 8

Argument 2: Type: Unsigned 8-bit

		 Min: 0 Max:255

Where:

nn = TPDO number, 1 to 8
mm = Transmission Type

ECAT - EtherCAT Enable Mode

HexCode: F7 CANOpen Object: 0x30F7

Description:

Enables EtherCAT and selects operating mode.

Syntax Serial ^ECAT nn

 ~ECAT

 Syntax Scripting SetConfig(_ECAT, nn)

 Number of Arguments: 1

 Argument 1: Mode

	 Type: Unsigned 8-bit

	 Min: 0		 Max: 3

	 Default: 0

Where:

nn =

0: Disabled

1: Polling

2: Sync Manager

3: Distributed Clock

ECT - EtherCAT Cycle Time

HexCode: F8 CANOpen Object: 0x30F8

Description:

It is applied to the Sync Manager and Distributed Clocks modes and should be used for
configuring Sync Manager and DC mode (synchronous with SYNC0 event). For Sync
Manager it sets the slave’ s cycle time (PDI ISR). For DC mode (synchronous with SYNC0
event) it sets the cycle time and the SYNC0 event cycle time (SYNC0 event). Values are in
millisecond (ms).

Commands Reference

450	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Syntax Serial ^ECT nn

 ~ECT

 Syntax Scripting SetConfig(_ECT, nn)

 Number of Arguments: 1

 Argument 1: Time

	 Type: Unsigned 16-bit

	 Min: 0		 Max: 4294

	 Default: 4

Where:

nn = Cycle time (ms)

EDID - EtherCAT Explicit Device ID

HexCode: 104 CANOpen Object: 0x3104

Description:

Configures the explicit slave device identification. It is useful for distinguishing identical
devices in the same network.

Syntax Serial ^EDID nn

 ~EDID

Syntax Scripting SetConfig(_EDID, nn)

Number of Arguments: 1

Argument 1: ID

	 Type: Unsigned 16-bit

	 Min: 0		 Max: 65535

	 Default: 5

Where:

nn = Explicit Slave Device ID

CAN/EtherCAT Communication Commands

	 Advanced Digital Motor Controller User Manual� 451

FSA – DS402 PDS Finite State Automation Enable

HexCode: CC CANOpen id: 0x30CC

Description:

Enables or disables the PDS Finite State Automation (FSA), as dictated in DS402 specifi-
cation.

Syntax Serial: ^FSA nn

 ~FSA

Syntax Scripting: setconfig(_FSA, nn)

Number of Arguments: 1

Argument 1: Mode

Type: Unsigned 8-bit
Min: 0 Max:1
Default: 0 = Off

Where:

nn =
0: FSA is inactive.
1: FSA is active.

RPDC - CANOpen RPDO COB-ID

HexCode: 10B CANOpen id: 0x310B

Description:

Sets the COB-ID of the respective RPDOs. If it is 0 then the default value for each RPDO
is set:
	 RPDO1: 0x200 + Node ID

	 RPDO2: 0x300 + Node ID

	 RPDO3: 0x400 + Node ID

	 RPDO4: 0x500 + Node ID

	 RPDO5-8: disabled

Syntax Serial: ^RPDC nn mm

Syntax Scripting: setconfig(_RPDC, nn, mm)

Number of Arguments: 2

	 Argument 1: RPDO Item Type:Unsigned 8-bit Min: 1 Max:8

	 Argument 2: COB-ID Type:Unsigned 32-bit

Commands Reference

452	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

nn = RPDO number, 1 to 8

mm = COB-ID

RPDM - CANOpen RPDO Mapping

HexCode: 9F CANOpen id: 0x309F

Description:

Sets the mapping of the respective RPDOs. Each value represents one mapped item and
there are 8 items fr each RPDO. The value holds the index, the subindex and the length of
the item.

Syntax Serial: ^RPDM nn mm

Syntax Scripting: setconfig(_RPDM, nn, mm)

Number of Arguments: 2

	 Argument 1: RPDO Item Type:Unsigned 8-bit Min: 1 Max:64

	 Argument 2: Mapped Item Type:Unsigned 32-bit

Where:

nn=

1: Mapped item 1 for RPDO 1

2: Mapped item 2 for RPDO 1

...

8: Mapped item 8 for RPDO 1

9: Mapped item 1 for RPDO 2

...

16: Mapped item 8 for RPDO 2

17: Mapped item 1 for RPDO 3

...

64: Mapped item 8 for RPDO 8

mm= (index << 16) + (subindex << 8) + length.

Example: Map Set motor command for channel 2 as first map item of RPDO 2.

 Object with index 0x2000, subindex 0x2 and length 4 bytes

 mm = (0x2000 << 16) + (0x2 << 8) + 4 = 0x20000204 = 536871428

 ^RPDM 10 536871428

CAN/EtherCAT Communication Commands

	 Advanced Digital Motor Controller User Manual� 453

TPDC - CANOpen TPDO COB-ID

HexCode: 10C CANOpen id: 0x310C

Description:

Sets the COB-ID of the respective TPDOs. If it is 0 then the default value for each RPDO
is set:

	 TPDO1: 0x180 + Node ID

	 TPDO2: 0x280 + Node ID

	 TPDO3: 0x380 + Node ID

	 TPDO4: 0x480 + Node ID

	 TPDO5-8: disabled

Syntax Serial: ^TPDC nn mm

Syntax Scripting: setconfig(_TPDC, nn, mm)

Number of Arguments: 2

	 Argument 1: TPDO Item Type:Unsigned 8-bit Min: 1 Max:8

	 Argument 2: COB-ID Type:Unsigned 32-bit

TPDM - CANOpen TPDO Mapping

HexCode: A0 CANOpen id: 0x30A0

Description:

Sets the mapping of the respective TPDOs. Each value represents one mapped item and
there are 8 items fr each TPDO. The value holds the index, the subindex and the length of
the item.

Syntax Serial: ^TPDM nn mm

Syntax Scripting: setconfig(_TPDM, nn, mm)

Number of Arguments: 2

	 Argument 1: TPDO Item Type:Unsigned 8-bit Min: 1 Max:64

	 Argument 2: Mapped Item Type:Unsigned 32-bit

Where:

nn=

1: Mapped item 1 for TPDO 1

2: Mapped item 2 for TPDO 1

...

8: Mapped item 8 for TPDO 1

Commands Reference

454	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

9: Mapped item 1 for TPDO 2

...

16: Mapped item 8 for TPDO 2

17: Mapped item 1 for TPDO 3

...

64: Mapped item 8 for TPDO 8

mm= (index << 16) + (subindex << 8) + length.

Example: Map Read Encoder Motor Speed for channel 1 as second map item of TPDO 1.

 Object with index 0x2103, subindex 0x1 and length 4 bytes

 mm = (0x2103 << 16) + (0x1 << 8) + 4 = 0x21030104 = 553844996

 ^TPDM 2 553844996

TCP Communication Commands

This section describes all the configuration parameters uses for TCP operation.

TABLE 15-43. TCP Commands

Command Arguments Description

DHCP Enable Enable DHCP

GWA IP Octet Gateway Address

IPA IP Octet IP Address

IPP None IP Port

PDNS IP Octet Primary DNS

SBM IP Octet Subnet Mask

SDNS IP Octet Secondary DNS

WMOD Mode TCP Mode

DHCP - Enable DHCP

HexCode: 6F CANOpen id: 0x306F

Description:

Configure this parameter in order to enable the DHCP. The default value for DHCP service
is disabled. When DHCP is Disabled the user configured IP address is used by the control-
ler to access the network. By enabling DHCP service, the controller uses the IP address
provided by the DHCP server.

Syntax Serial: ^DHCP nn

	 ~ DHCP

Syntax Scripting: setconfig(_DHCP, nn)

TCP Communication Commands

	 Advanced Digital Motor Controller User Manual� 455

Number of Arguments: 1

	 Argument 1: Enable DHCP

		 Type: Unsigned 8-bit
		 Min: 0 Max: 1
		 Default: 0

Where:

nn = Enable DHCP
0: Disabled.
1: Enabled.

Example:

^DHCP 1: Enable DHCP.

GWA - Gateway Address

HexCode: 69 CANOpen id: 0x3069

Description:

Configure this parameter in order to set the Gateway Address of your controller’s net-
work. Gateway Address option includes 4 values representing each octet in the IP ad-
dress v4 format. The default Gateway Address value is 192.168.1.1.

Syntax Serial: ^GWA cc nn

	 ~GWA

Syntax Scripting: setconfig(_GWA, cc, nn)

Number of Arguments: 2

	 Argument 1: IP Octet
		 Type: Unsigned 8-bit
		 Min: 1 Max: 4

	 Argument 2: Gateway Address

		 Type: Unsigned 8-bit
		 Min: 0 Max: 255
		 Default:

TABLE 15-44. GWA default values

Octet Value

1 192

2 168

3 1

4 1

Commands Reference

456	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

Where:

cc = octet
nn = octet value

Example:

^GWA 1 192_^GWA 2 168_^GWA 3 2_^GWA 4 1: Set Gateway Address 192.168.2.1.

IPA - IP Address

HexCode: 68 CANOpen id: 0x3068

Description:

Configure this parameter in order to set the IP Address. IP Address option includes 4 val-
ues representing each octet in the IP address v4 format. The default IP address, if DHCP
is disabled, is 192.168.1.20.

Syntax Serial: ^IPA cc nn

	 ~IPA

Syntax Scripting: setconfig(_IPA, cc, nn)

Number of Arguments: 2

	 Argument 1: IP Octet

		 Type: Unsigned 8-bit
		 Min: 1 Max: 4

	 Argument 2: IP Address

		 Type: Unsigned 8-bit
		 Min: 0 Max: 255
		 Default:

TABLE 15-45. IPA default values

Octet Value

1 192

2 168

3 1

4 20

Where:

cc = octet
nn = octet value

Example:

^IPA 1 192_^IPA 2 168_^IPA 3 1_^IPA 4 100: Set IP Address 192.168.1.100.

TCP Communication Commands

	 Advanced Digital Motor Controller User Manual� 457

IPP - IP Port

HexCode: 6B CANOpen id: 0x306B

Description:

Configure this parameter in order to set the IP Port. Default IP Port value is 9761. The IP
address combined with the IP Port value are used to connect to the controller.

Syntax Serial: ^IPP nn

	 ~IPP

Syntax Scripting: setconfig(_IPP, nn)

Number of Arguments: 1

	 Argument 1: IP Port
		 Type: Unsigned 16-bit
		 Min: 0 Max: 65535
		 Default: 9761

Where:

nn = IP Port

Example:

^IPP 1300: Set IP Port 1300.

PDNS - Primary DNS

HexCode: 6D CANOpen id: 0x306D

Description:
Configure this parameter in order to set the address of the primary DNS server. Primary
DNS option includes 4 values representing each octet in the IP address v4 format. Prima-
ry DNS server default address is 192.168.1.1.

Syntax Serial: ^PDNS cc nn

	 ~PDNS

Syntax Scripting: setconfig(_PDNS, cc, nn)

Number of Arguments: 2

	 Argument 1: IP Octet

		 Type: Unsigned 8-bit
		 Min: 1 Max: 4

	 Argument 2: Primary DNS

		 Type: Unsigned 8-bit
		 Min: 0 Max: 255
		 Default:

Commands Reference

458	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

TABLE 15-46. PDNS default values

Octet Value

1 192

2 168

3 1

4 1

Where:

cc = octet
nn = octet value

Example:

^PDNS 1 192_^PDNS 2 168_^PDNS 3 2_^PDNS 4 1: Set Primary DNS 192.168.2.1.

SBM - Subnet Mask

HexCode: 6A CANOpen id: 0x306A

Description:

Configure this parameter to set the Subnet Mask to define the range of IP addresses that
can be used in your network. Subnet Mask option includes 4 values representing each
octet in the IP address v4 format. Devices within the same sub-network can communi-
cate directly. Using the default subnet mask, all devices with the first 3 bytes identical
are located in the same sub-network and almost 256 (not all 256 values may be used as
a host IP) unique host devices may be used in the network. Subnet Mask option includes
4 values representing each octet in the IP address. The default Subnet Mask value is
255.255.255.0.

Syntax Serial: ^SBM cc nn

	 ~SBM

Syntax Scripting: setconfig(_SBM, cc, nn)

Number of Arguments: 2

	 Argument 1: IP Octet
		 Type: Unsigned 8-bit
		 Min: 1 Max: 4

	 Argument 2: Subnet Mask

		 Type: Unsigned 8-bit
		 Min: 0 Max: 255
		 Default:

TABLE 15-47. SBM default values

Octet Value

1 255

2 255

3 255

4 0

TCP Communication Commands

	 Advanced Digital Motor Controller User Manual� 459

Where:

cc = octet
nn = octet value

Example:

^SBM 1 255_^SBM 2 255_^SBM 3 254_^SBM 4 0: Set Gateway Address
255.255.254.0.

SDNS - Primary DNS

HexCode: 6E CANOpen id: 0x306E

Description:

Configure this parameter to set the address of the secondary DNS server. Secondary
DNS option includes 4 values representing each octet in the IP address v4 format. Sec-
ondary DNS server default address is 0.0.0.0. By setting the secondary DNS server to
0.0.0.0 then automatically a secondary DNS server address is assigned. Since the sec-
ondary server address is a backup, there is no need to be configured, unless necessary.

Syntax Serial: ^SDNS cc nn

	 ~SDNS

Syntax Scripting: setconfig(_SDNS, cc, nn)

Number of Arguments: 2

	 Argument 1: IP Octet
		 Type: Unsigned 8-bit
		 Min: 1 Max: 4

	 Argument 2: Primary DNS

		 Type: Unsigned 8-bit
		 Min: 0 Max: 255
		 Default:

TABLE 15-48. SDNS default values

Octet Value

1 192

2 168

3 1

4 1

Where:

cc = octet
nn = octet value

Example:

^SDNS 1 192_^SDNS 2 168_^SDNS 3 2_^SDNS 4 1: Set Secondary DNS 192.168.2.1.

Commands Reference

460	 Advanced Digital Motor Controller User Manual	 V3.0, March 8, 2024

WMOD - TCP Mode

HexCode: 67 CANOpen id: 0x3067

Description:

Configure this parameter to enable the TCP functionality. When the TCP mode is set as
Disabled the Ethernet port is idle and no data packets are being transmitted or received.
To communicate via TCP/IP this parameter must be set to Enabled. For communicating via
Modbus TCP or Modbus TCP over RTU, TCP Mode must be set to Enabled.

Syntax Serial: ^WMOD nn

	 ~WMOD

Syntax Scripting: setconfig(_WMOD, nn)

Number of Arguments: 1

	 Argument 1: TCP Mode
		 Type: Unsigned 8-bit
		 Min: 0 Max: 1
		 Default: 0

Where:

nn = TCP Mode
0: Disabled.
1: Enabled.

Example:

^WMOD 1: Enable TCP functionality.

﻿

	 Advanced Digital Motor Controller User Manual� 461

	Revision History
		Introduction
	Refer to the Datasheet for Hardware-Specific Issues
	User Manual Structure and Use
	SECTION 1 Connecting Power and Motors to the Controller
	SECTION 2 Safety Recommendations
	SECTION 3 Connecting Sensors and Actuators to Input/Outputs
	SECTION 4 I/O Configuration and Operation
	SECTION 5 Roboteq Products Connection and Operation
	SECTION 6 Command Modes
	SECTION 7 Motor Operating Features and Options
	SECTION 8 Brushless Motor Connections and Operation
	SECTION 9 AC Induction MotorOperation
	SECTION 10 Closed Loop Speed and Speed Position Modes
	SECTION 11 Closed Loop Relative and Tracking Position Modes
	SECTION 12 Closed Loop Count Position Mode
	SECTION 13 Closed Loop Torque Mode
	SECTION 14 Serial (RS232/RS485/USB/TCP) Operation
	SECTION 15 Commands Reference

	Section 1: Connecting Power and Motors to the Controller
	Power Connections
	Controller Power
	Controller Powering Schemes
	Mandatory Connections
	Connection for Safe Operation with Discharged Batteries (note 1)
	Use precharge Resistor to prevent switch arcing (note 2)
	Protection against Damage due to Regeneration (notes 3)
	Connect Case to Earth if connecting AC equipment (note 4)
	Avoid Ground loops when connecting I/O devices (note 5)

	Connecting the Motors
	Single Channel Operation
	Power Fuses
	Wire Length Limits
	Electrical Noise Reduction Techniques
	Battery Current vs. Motor Current
	Power Regeneration Considerations
	Using the Controller with a Power Supply

	Section 2: Safety Recommendations
	Possible Failure Causes
	Motor Deactivation in Normal Operation
	Motor Deactivation in Case of Output Stage Hardware Failure
	Manual Emergency Power Disconnect
	Remote Emergency Power Disconnect
	Protection using Supervisory Microcomputer
	Self Protection against Power Stage Failure
	Safe Torque-Off (STO)
	Safe Torque Off (STO) on Roboteq Controllers
	Soft-STO inputs
	Activating STO
	Deactivating STO
	Constraints when using STO
	STO Failure Messages
	Firmware implementation
	Installation – Maintenance
	STO Voltage source specification attention
	Compliance and Safety Metrics
	Technical Data

	Section 3: Connecting Sensors and Actuators to Input/Outputs
	Controller Connections
	Controller’s Inputs and Outputs
	Connecting devices to Digital Outputs
	Connecting Resistive Loads to Outputs
	Connecting Inductive loads to Outputs
	Connecting Switches or Devices to Inputs shared with Outputs

	Connecting Switches or Devices to direct Digital Inputs
	Connecting a Voltage Source to Analog Inputs
	Reducing noise on Analog Inputs
	Connecting Potentiometers to Analog Inputs
	Connecting Potentiometers for Commands with Safety band guards

	Connecting External Thermistor to Analog Inputs
	Using the Analog Inputs to Monitor External Voltages
	Connecting to RC Radios

	Connecting SSI Sensors
	SSI Sensors Overview
	Connecting the SSI Sensor
	SSI Sensor Clock Polarity

	Connecting Optical Encoders
	Optical Incremental Encoders Overview
	Recommended Encoder Types

	Connecting the Encoder
	Cable Length and Noise Considerations
	Motor - Encoder Polarity Matching

	Section 4: I/O Configuration
and Operation
	Basic Operation
	Input Selection
	Digital Inputs Configurations and Uses
	Analog Inputs Configurations and Use
	Analog Min/Max Detection
	Min, Max and Center adjustment
	Deadband Selection
	Command Correction
	Use of Analog Input

	Pulse Inputs Configurations and Uses
	Use of Pulse Input

	Digital Outputs Configurations and Triggers
	Encoder Configurations and Use
	SSI Configuration and Use
	Hall and other Rotor Sensor Inputs
	Sensor Min Max values
	Relative Speed
	Brake Release

	Section 5: Roboteq Products Connection and Operation
	Introduction to MGS1600 Magnetic Guide Sensor
	Introduction to FLW100 Flowsensor
	Introduction to BMS10X0 Battery Management System
	Available Interfaces
	MultiPWM interface
	Enabling MultiPWM Communication
	Accessing Sensor Information

	Connecting Multiple Similar Sensors
	Accessing Multiple Sensor Information Sequentially
	Accessing Multiple Sensor Information Simultaneously

	Section 6: Command Modes
	Input Command Modes and Priorities
	USB vs Serial Communication Arbitration
	Network Commands Arbitration
	Commands issued from MicroBasic scripts

	Operating the Controller in RC mode
	Input RC Channel Selection
	Input RC Channel Configuration
	Joystick Range Calibration
	Deadband Insertion
	Command Correction
	Reception Watchdog

	Using Sensors with PWM Outputs for Commands
	Operating the Controller In Analog Mode
	Input Analog Channel Selection
	Input Analog Channel Configuration
	Analog Range Calibration
	Using Digital Input for Inverting direction
	Safe Start in Analog Mode
	Protecting against Loss of Command Device
	Safety Switches

	Monitoring and Telemetry in RC or Analog Modes
	Using the Controller in Serial (USB/RS232/RS485/TCP) Mode

	Section 7: Motor Operating Features and Options
	Power Output Circuit Operation
	Global Power Configuration Parameters
	PWM Frequency
	Overvoltage Protection
	Undervoltage Protection
	Temperature-Based Protection
	Current Limiting
	I2T Protection
	Short Circuit Protection
	Closed Loop Error Protection
	Mixed Mode Select

	Motor Channel Parameters
	User Selected Current Limit Settings
	Selectable Amps Threshold Triggering
	Programmable Acceleration & Deceleration
	Forward and Reverse Power Adjustment Gain

	Speed feedback filter
	Selecting the Motor Control Modes
	Open Loop Speed Control
	Closed Loop Speed Control
	Closed Loop Speed Position Control
	Closed Loop Position Relative Control
	Closed Loop Count Position
	Closed Loop Position Tracking
	Torque Mode

	Motion Control Modes Overview
	Feedforward terms
	Acceleration feedforward control
	Velocity feedforward control

	DS402 Homing Function

	Section 8: Brushless Motor Connections and Operation
	Introduction to Brushless Motors
	Number of Poles
	Trapezoidal Switching
	Hall Sensor Wiring
	Hall Sensor Verification
	Hall Sensor Wiring Order
	Determining the Wiring Order Empirically
	Hall Sensor Alignment

	Sinusoidal Commutation
	Configuring the Controller for Sinusoidal Commutation
	Selecting and Configuring Supported Angle Sensors
	Preparation for Automatic Sensor Setup
	Running the Automatic Sensor Setup
	Field Oriented Control (FOC)

	Decoupling Current Control
	Field Weakening
	Manual Field Weakening
	Automatic Field Weakening

	Interior Permanent Magnet Motor Operation
	Constant Torque Region IPM motor control algorithm
	Constant Power Region IPM motor control algorithm
	Operating Brushless Motors
	Stall Detection
	Sensor Error Detection
	Speed Measurement using the angle feedback Sensors
	Distance Measurement using Hall, SSI or other Sensors

	Section 9: AC Induction MotorOperation
	Introduction to AC Induction Motors
	Asynchronous Rotation and Slip
	Connecting the Motor
	Selecting and Connecting the Encoder
	Testing the Encoder

	Open Loop Variable Frequency Drive Operation
	Figuring the Motor’s Volts per Hertz
	Maintaining Slip within Safe Range

	Closed Loop Speed Mode with Constant Slip Control
	Field Oriented Control (FOC) mode Operation
	Configuring FOC Torque Mode
	FOC Gains Determination & Tuning
	Configuring FOC Speed Mode
	Speed Limiting in FOC Torque Mode

	Induction Motor Parameters Calculation
	No load testing
	Locked rotor testing
	Optimal slip calculation

	Section 10: Closed Loop Speed and Speed-Position Modes
	Modes Description
	Closed Loop Speed Mode
	Motor Sensors
	Tachometer or Encoder Mounting
	Tachometer wiring
	Hall Sensors as Speed Sensors
	Speed Sensor and Motor Polarity
	Controlling Speed in Closed Loop
	PID Description
	PID tuning in Closed Loop Speed Mode
	PID Tuning in Speed Position Mode
	Closed Loop Speed Position Control

	Section 11: Closed Loop Relative and Tracking Position Modes
	Modes Description
	Position Relative Mode
	Position Tracking Mode
	Selecting the Position Modes
	Position Feedback Sensor Selection
	Sensor Mounting
	Feedback Sensor Range Setting
	Adding Safety Limit Switches
	Using Current Trigger as Protection
	Operating in Closed Loop Relative Position Mode
	Operating in Closed Loop Tracking Mode
	Position Mode Relative Control Loop Description
	PID tuning in Position Relative and Tracking Position Modes
	PID Tuning Differences between Position Relative and Position Tracking

	Section 12: Closed Loop Count Position Mode
	Mode description
	Sensor Types and Mounting
	Encoder Home reference
	SSI Sensor Home reference

	Preparing and Switching to Closed Loop
	Count Position Commands
	Position Command Chaining
	Position Accuracy Considerations
	PID Tuning in Count Position Mode

	Section 13: Closed Loop Torque Mode
	Torque Mode Description
	Torque Mode Selection, Configuration and Operation
	Torque Mode Tuning
	Speed Limiting

	Section 14: Serial (RS232/RS485/USB/TCP) Operation
	Use and benefits of Serial Communication
	Serial Port Configuration
	Connector RS232 Pin Assignment
	Connector RS485 Pin Assignment

	Setting Different Bit Rates
	Cable configuration
	Extending the RS232 Cable

	Connecting to Arduino and other TTL Serial Microcomputers
	RS485 Configuration
	USB Configuration
	TCP Configuration
	Command Priorities
	Communication Arbitration
	Network Commands
	Script-generated Commands

	Communication Protocol Description
	Character Echo
	Command Acknowledgment
	Command Error
	Watchdog time-out
	Controller Present Check

	Raw Redirect Mode
	Configuration
	Checking Received Frames
	Reading Received Frames
	Transmitting Frames

	Section 15: Commands
Reference
	Commands Types
	Runtime commands
	Runtime queries
	Maintenance commands
	Configuration commands

	Runtime Commands
	AC - Set Acceleration
	AX - Next Acceleration
	B - Set User Boolean Variable
	BRK - Brake Override
	C - Set Encoder Counters
	CB - Set Internal Sensor Counter
	CIG – Set Current Integral Gains
	CG - Set Motor Command via CAN
	CPG – Set Current Proportional Gains
	CS - CAN Send
	CSS - Set SSI Sensor Counter
	CU - Raw Redirect Send
	D0 - Reset Individual Digital Out bits
	D1 - Set Individual Digital Out bits
	DC - Set Deceleration
	DG – Set PID Derivative Gains
	DS - Set all Digital Out bits
	DX - Next Deceleration
	EES - Save Configuration in EEPROM
	EX - Emergency Stop
	G - Go to Speed or to Relative Position
	GIQ - Go to Torque Amps
	GID - Go to Flux Amps
	H - Load Home counter
	IG – Set PID Integral Gains
	MG - Emergency Stop Release and Fault Clearance
	MS - Stop in all modes
	MSS - Motor Sensor Setup
	P - Go to Absolute Desired Position
	PG – Set PID Proportional Gains
	PR - Go to Relative Desired Position
	PRX - Next Go to Relative Desired Position
	PX - Next Go to Absolute Desired Position
	QST - Quick Stop
	R - MicroBasic Run
	S - Set Motor Speed
	STT - STO Self-Test
	SX - Next Velocity
	VAR - Set User Variable
	DS402 Runtime Commands
	CW – Control Word (DS402)
	Profile Position Mode
	Velocity Mode
	Homing Mode
	Other Modes
	FEW - Following Error Window (DS402)
	FET - Following Error Time Out (DS402)
	HMD – Homing Method (DS402)
	HSP – Homing Speed (DS402)
	INT - Interpolation Time Period (DS402)
	MSL - Max Motor Speed (DS402)
	PAC – Profile Acceleration (DS402)
	PDC – Profile Deceleration (DS402)
	PLT - Software Position Limit (DS402)
	POF – Position Offset
	POS – Target Position (DS402)
	PSP – Profile Velocity (DS402)
	ROM – Modes of Operation (DS402)
	RST – Reset Controller
	S16 – Target Velocity (DS402)
	SAC – Velocity Acceleration (DS402)
	SDC – Velocity Deceleration (DS402)
	SPC - Target Profile Velocity (DS402)
	SPL – Velocity Min/Max Amount (DS402)
	TC – Target Torque (DS402)
	TOF – Torque Offset
	TSL – Torque Slope (DS402)
	VOF – Velocity Offset

	Runtime Queries
	A - Read Motor Amps
	AI - Read Analog Inputs
	AIC - Read Analog Input after Conversion
	ANG - Read Rotor Angle
	ASI - Read Raw Sin/Cos sensor
	B - Read User Boolean Variable
	BA - Read Battery Amps
	BCR - Read Internal Sensor Count Relative
	BMC - Read BMS State Of Charge in AmpHours
	BMF - Read BMS status flags
	BMS - Read BMS switch states
	BRK - Read Brake Override Status
	BS - Read Internal Sensor Motor Speed in RPM
	BSC - Read BMS State of Charge in percentage
	BSR - Read Internal Sensor Motor Speed as 1/1000 of Max RPM
	C - Read Encoder Counter Absolute
	CAN - Read Raw CAN frame
	CB - Read Absolute Internal Sensor Counter
	CD - Read Raw Redirect Received Frames Count
	CEC – CAN Error Counter
	CF - Read Raw CAN Received Frames Count
	CHS - CAN Consumer Heartbeat Status
	CIA - Read Converted Analog Command
	CIG – Read Current Integral Gains
	CIP - Read Internal Pulse Command
	CIS - Read Internal Serial Command
	CL - Read RoboCAN Alive Nodes Map
	CPG – Read Current Proportional Gains
	CR - Read Encoder Count Relative
	CSR - Read Relative SSI Sensor Counter
	CSS - Read Absolute SSI Sensor Counter
	D - Read Digital Inputs
	DDT - Read Raw Redirect Received Frame
	DG – Read PID Derivative Gains
	DI - Read Individual Digital Inputs
	DO - Read Digital Output Status
	DPA - Read DC/Peak Amps
	DR - Read Destination Reached
	E - Read Closed Loop Error
	F - Read Feedback
	FC - Read FOC Angle Adjust
	FLW - Read Flow Sensor Counter
	FF - Read Fault Flags
	FID - Read Firmware ID
	FIN - Read Firmware ID (numerical)
	FM - Read Runtime Status Flag
	FS - Read Status Flags
	HS - Read Hall Sensor States
	ICL - Is RoboCAN Node Alive
	IG – Read PID Integral Gains
	LK - Read Lock status
	M - Read Motor Command Applied
	MA - Read Field Oriented Control Motor Amps
	MCB - Read Magsensor Markers Pattern
	MCU - Microprocessor Usage
	MGD - Read Magsensor Track Detect
	MGM - Read Magsensor Markers
	MGS - Read Magsensor Status
	MGT - Read Magsensor Track Position
	P - Read Motor Power Output Applied
	PG – Read PID Proportional Gains
	PHA - Read Phase Amps
	PI - Read Pulse Inputs
	PIC - Read Pulse Input after Conversion
	S - Read Encoder Motor Speed in RPM
	SCC - Read Script Checksum
	SDT - Read Raw Redirect Received Frame as string
	SEC - Read Sensor Errors
	SNA - Read Sensor Angle
	SNS – Sense Voltage
	SR - Read Encoder Speed Relative
	SS - Read SSI Sensor Motor Speed in RPM
	SSR - Read SSI Sensor Speed Relative
	STT - STO Self-Test Result
	T - Read Temperature
	TM - Read Time
	TR - Read Position Relative Tracking
	TRN - Read Control Unit type and Controller Model
	UID - Read MCU Id
	V - Read Volts
	VAR - Read User Integer Variable
	SL - Read Slip Frequency

	DS402 Runtime Queries
	AOM – Modes of Operation Display (DS402)
	CW – Control Word (DS402)
	SPE – Velocity Actual Value (DS402)
	FEW - Following Error Window (DS402)
	FET - Following Error Time Out (DS402)
	HMD – Homing Method (DS402)
	HSP – Homing Speed (DS402)
	INT - Interpolation Time Period (DS402)
	MSL - Max Motor Speed (DS402)
	PAC – Profile Acceleration (DS402)
	PDC – Profile Deceleration (DS402)
	PLT - Software Position Limit (DS402)
	POF - Position Offset (DS402)
	PST - Position Actual Value
	POS – Target Position (DS402)
	PSP – Profile Velocity (DS402)
	RMP – VL Velocity Demand (DS402)
	ROM – Modes of Operation (DS402)
	S16 – Target Velocity (DS402)
	SAC – Velocity Acceleration (DS402)
	SDC – Velocity Deceleration (DS402)
	SDM – Supported Drive Modes (DS402)
	SPL – Velocity Min/Max Amount (DS402)
	SW – Status Word (DS402)
	TC – Target Torque (DS402)
	TOF - Torque Offset (DS402)
	TRQ – Target Torque (DS402)
	TSL – Torque Slope (DS402)
	VDV – Velocity Demand (DS402)
	VNM – Version Number (DS402)
	VOF - Velocity Offset (DS402)

	Query History Commands
	# - Send Next History Item / Stop Automatic Sending
	# C - Clear Buffer History
	# nn - Start Automatic Sending
	# xx nn - Start automatic sending for specific stream
	 /?Q cc - Create data streams
	//? - Dump the streams’ prefixes and delimiters

	Maintenance Commands
	CLMOD – Motor/Sensor Setup
	CLSAV - Save calibrations to Flash
	DFU - Update Firmware via USB/CANOpen
	EELD - Load Parameters from EEPROM
	EELOG - Dump Flash Log Data
	EERST - Reset Factory Defaults
	EESAV - Save Configuration in EEPROM
	ERASE - Erase Flash Log Data
	LK - Lock Configuration Access
	RESET - Reset Controller
	SLD - Script Load
	STIME - Set Time
	UK - Unlock Configuration Access

	Set/Read Configuration Commands
	Setting Configurations
	Reading Configurations
	Configuration Read Protection

	General Configuration and Safety
	ACS - Analog Center Command to Start
	AMS - Analog keep within Guard Bands
	BEE - User Storage in Battery Backed RAM
	BRUN - Script Auto-Start
	CLIN - Command Linearity
	CPRI - Command Priorities
	DFC - Default Command value
	DMOD – Modbus Mode
	ECHOF - Enable/Disable Serial Echo
	EE - User-Defined Values
	FLCL – Automatic Fault Clearance
	ISM - Raw Redirect Mode
	MDAL – Modbus Data Alignment
	MNOD – Modbus Slave ID
	PMS - Pulse keep within Min & Max Safety
	RSBR - Set RS232/RS485 baudrate
	RS485 - Enable RS485
	RWD - Serial Data Watchdog
	SCRO - Select Print output port for scripting
	STO – STO Enable
	TELS - Telemetry String

	Analog, Digital, Pulse IO Configurations
	ACTR - Analog Input Center (0)
	ADB - Analog Input Deadband
	AINA - Analog Input Use
	ALIN - Analog Input Linearity
	AMAX - Analog Input Max
	AMAXA - Analog Input Action at Max
	AMIN - Analog Input Min
	AMINA - Analog Input Action at Min
	AMOD - Analog Conversion Type
	APOL - Analog Input Conversion Polarity
	AUXV - Digital Output High Side Drive Voltage Level
	DINA - Digital Input Action
	DINL - Digital Input Active Level
	DOA - Digital Output Action
	DOL - Digital Outputs Active Level
	DOT - Digital Output Type
	ENCO - Encoder Output Enable
	PCTR - Pulse Input Center
	PDB - Pulse Input Deadband
	PINA - Pulse Input Use
	PLIN - Pulse Input Linearity
	PMAX - Pulse Input Max
	PMAXA - Pulse Input Action at Max
	PMIN - Pulse Input Min
	PMINA - Pulse Input Action at Min
	PMOD - Pulse Input Capture Type
	PPOL - Pulse Input Capture Polarity

	Motor Configurations
	ALIM - Amps Limit
	ATGA - Amps Trigger Action
	ATGD - Amps Trigger Delay
	ATRIG - Amps Trigger Level
	B25 - Thermistor Temperature Coefficient β25
	BKD - Brake Delay
	BPR - Bypass Trajectory/Ramp
	BRV - Brake Release Voltage
	BHV - Brake Hold Voltage
	BDT - Brake Delay Time
	BLFB - Closed loop Feedback Sensor
	BLSTD - Stall Detection
	BR - Mechanical System Rotating Friction Coefficient
	CLERD - Close Loop Error Detection
	EDEC - Motor Fault Deceleration Rate
	EHL - Encoder Max Limit
	EHLA - Encoder Action at Max
	EHOME - Encoder Home Count
	ELL - Encoder Min Limit
	ELLA - Encoder Action at Min
	EMOD - Encoder Usage
	EPPR - Encoder Pulse/Rev Value
	FET – Loop Error Time
	FEW – Loop Error Limit
	ICAP - PID Integrator Limit
	JR - Mechanical System Inertia
	KDG - PID Derivative Gain
	KIG - PID Integral Gain
	KPG - PID Proportional Gain
	LPFB - Speed feedback low pass filter bandwidth
	MAC - Motor Acceleration Rate
	MCLE - SSI Multi-turn Counter number of bits
	MDEC - Motor Deceleration Rate
	MLX - Molex Input
	MDIR - Motor Direction
	MMOD - Operating Mode
	MNRPM - Min Speed RPM
	MSTA - SSI Multi-turn Counter start bit position
	MVEL - Position Mode Velocity
	MXMD - Mixed Mode
	MXPF - Motor Max Power Forward
	MXPR - Motor Max Power Reverse
	MXRPM - Max Speed RPM
	MXTRN - Position Turns Min to Max
	NOMA - Nominal Current
	OVH - Overvoltage hysteresis
	OVL - Overvoltage Limit
	OTL - Over Temperature Limit
	R25 - Thermistor Resistance at 25oC
	SCLE - SSI Counter number of bits
	SCLK - SSI Clock Speed
	SED - Sensor Error Detection
	SFTS - Safety Switch Connected
	SHL - SSI Sensor Max Limit
	SHLA - SSI Sensor Action at Max
	SHOME - SSI Sensor Home Count
	SLEN - SSI sensor’s frame total number of bits
	SLL - SSI Sensor Min Limit
	SLLA - SSI Sensor Action at Min
	SMOD - SSI Sensor Usage
	SSTA - SSI Counter start bit position
	THLD - Short Circuit Detection Sensitivity
	TNM - Motor Torque Constant
	TPAL - Time for Amps Limit
	UVL - Undervoltage Limit

	Brushless Specific Commands
	BADJ - Brushless Angle Zero Adjust
	BADV - Brushless timing angle adjust
	BFBK - Brushless Sinusoidal Angle Sensor
	BHL - Brushless Internal Sensor Max Limit
	BHLA - Brushless Internal Sensor Action at Max
	BHOME - Brushless Internal Sensor Home Count
	BLL - Brushless Internal Sensor Min Limit
	BLLA - Brushless Internal Sensor Action at Min
	BMOD - Brushless Switching Mode
	BPOL - Number of Pole Pairs
	BZPW - Brushless Reference Seek Power
	FWVR - Field Weakening Voltage Ratio
	HPO - Hall Sensor Position Type
	HSAT - Hall Sensor Angle Table
	HSM - Hall Sensor Map
	KIF - Current PID Integral Gain
	KPF - Current PID Proportional Gain
	LD - Motor d-axis Inductance
	LQ - Motor q-axis Inductance
	MXPW - Maximum Motor Output Power at Constant Power
	PSA - Phase Shift Angle
	RS - Motor Stator Resistance
	SPOL - SinCos/SSI Sensor Pole Pairs
	SWD - Swap Windings
	TID - FOC Target Id
	VK - Motor Voltage constant
	ZSMA - Cos Amplitude
	ZSMC - SinCos Calibration
	AC Induction Specific Commands
	BFBK - AC Induction Operating Mode
	ILM - Mutual Inductance
	ILLR - Rotor Leakage Inductance
	IRR - Rotor Resistance
	MPW - Minimum Power
	MXS - Optimal Slip Frequency
	RFC - Rotor Flux Current
	VPH - AC Induction Volts per Hertz

	CAN/EtherCAT Communication Commands
	CAS - CANOpen Auto start
	CBR - CAN Bit Rate
	CEN - CAN Mode
	CGT – CANOpen Guard Time
	CHB - CAN Heartbeat
	CHBT – Consumer Heartbeat Time
	CHLA - CAN Consumer Heartbeat Lost Action
	CLSN - CAN Listen Node ID
	CNOD - CAN Node ID
	CSRT - MiniCAN SendRate
	CTPS - CANOpen TPDO SendRate
	CTT – CANOpen Transmission Type
	ECAT - EtherCAT Enable Mode
	ECT - EtherCAT Cycle Time
	EDID - EtherCAT Explicit Device ID
	FSA – DS402 PDS Finite State Automation Enable
	RPDC - CANOpen RPDO COB-ID
	RPDM - CANOpen RPDO Mapping
	TPDC - CANOpen TPDO COB-ID
	TPDM - CANOpen TPDO Mapping

	TCP Communication Commands
	DHCP - Enable DHCP
	GWA - Gateway Address
	IPA - IP Address
	IPP - IP Port
	PDNS - Primary DNS
	SBM - Subnet Mask
	SDNS - Primary DNS
	WMOD - TCP Mode

